Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Ecol ; 85(4): 1412-1422, 2023 May.
Article in English | MEDLINE | ID: mdl-35524818

ABSTRACT

The microalga Chlorella sorokiniana and the microalgae growth-promoting bacteria (MGPB) Azospirillum brasilense have a mutualistic interaction that can begin within the first hours of co-incubation; however, the metabolites participating in this initial interaction are not yet identified. Nuclear magnetic resonance (NMR) was used in the present study to characterize the metabolites exuded by two strains of C. sorokiniana (UTEX 2714 and UTEX 2805) and A. brasilense Cd when grown together in an oligotrophic medium. Lactate and myo-inositol were identified as carbon metabolites exuded by the two strains of C. sorokiniana; however, only the UTEX 2714 strain exuded glycerol as the main carbon compound. In turn, A. brasilense exuded uracil when grown on the exudates of either microalga, and both microalga strains were able to utilize uracil as a nitrogen source. Interestingly, although the total carbohydrate content was higher in exudates from C. sorokiniana UTEX 2805 than from C. sorokiniana UTEX 2714, the growth of A. brasilense was greater in the exudates from the UTEX 2714 strain. These results highlight the fact that in the exuded carbon compounds differ between strains of the same species of microalgae and suggest that the type, rather than the quantity, of carbon source is more important for sustaining the growth of the partner bacteria.


Subject(s)
Azospirillum brasilense , Chlorella , Microalgae , Symbiosis , Exudates and Transudates
2.
Microb Ecol ; 77(4): 980-992, 2019 May.
Article in English | MEDLINE | ID: mdl-30397795

ABSTRACT

The effect of three different nutritional conditions during the initial 12 h of interaction between the microalgae Chlorella sorokiniana UTEX 2714 and the plant growth-promoting bacterium Azospirillum brasilense Cd on formation of synthetic mutualism was assessed by changes in population growth, production of signal molecules tryptophan and indole-3-acetic acid, starch accumulation, and patterns of cell aggregation. When the interaction was supported by a nutrient-rich medium, production of both signal molecules was detected, but not when this interaction began with nitrogen-free (N-free) or carbon-free (C-free) media. Overall, populations of bacteria and microalgae were larger when co-immobilized. However, the highest starch production was measured in C. sorokiniana immobilized alone and growing continuously in a C-free mineral medium. In this interaction, the initial nutritional condition influenced the time at which the highest accumulation of starch occurred in Chlorella, where the N-free medium induced faster starch production and the richer medium delayed its accumulation. Formation of aggregates made of microalgae and bacteria occurred in all nutritional conditions, with maximum at 83 h in mineral medium, and coincided with declining starch content. This study demonstrates that synthetic mutualism between C. sorokiniana and A. brasilense can be modulated by the initial nutritional condition, mainly by the presence or absence of nitrogen and carbon in the medium in which they are interacting.


Subject(s)
Azospirillum brasilense/physiology , Chlorella/physiology , Symbiosis , Indoleacetic Acids/metabolism , Microalgae/physiology , Population Growth , Starch/metabolism , Tryptophan/metabolism
3.
J Microbiol Methods ; 135: 96-104, 2017 04.
Article in English | MEDLINE | ID: mdl-28232090

ABSTRACT

Isolation of nucleic acids from Chlorella is difficult, given the chemically complex nature of their cell walls and variable production of metabolites. Immobilization of microalgae in polymers adds additional difficulty. Here, we modified, amended, and standardized methods for isolation of nucleic acids and compared the yield of DNA and RNA from free-living and encapsulated microalgae C. sorokiniana. Isolation of nucleic acids from immobilized cells required two steps in dissolving the alginate matrix, releasing the cells, and mechanical disruption with glass beads. For DNA extraction, we used modified versions of a commercial kit along with the hexadecyltrimethylammonium bromide (CTAB) method. For RNA extraction, we used the commercial TRI reagent procedure and the CTAB-dithiotreitol method. Quantity and quality of nucleic acids in extracts varied with growth conditions, isolation procedures, and time of incubation of the original culture. There were consistently higher amounts of DNA and RNA in extracts from immobilized cells. Quantitatively, the modified procedure with the commercial Promega kit was the most reliable procedure for isolating DNA and a modified commercial TRI reagent procedure was the choice for isolating RNA. All four procedures eliminated proteins efficiently and had low levels of contamination from residual polysaccharides from the matrices and/or metabolites naturally produced by the microalgae. All DNA extracts under both growth conditions, time of incubation, and two isolation methods successfully amplified the 18S ribosomal RNA by PCR and quantitative reverse transcription (RT-qPCR).


Subject(s)
Alginates/chemistry , Cells, Immobilized , DNA/isolation & purification , Microalgae/chemistry , Microalgae/genetics , RNA/isolation & purification , Cetrimonium , Cetrimonium Compounds/chemistry , Chlorella/chemistry , Chlorella/genetics , Chlorella/growth & development , Chlorella/metabolism , DNA/chemistry , Glass , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Microalgae/growth & development , Microalgae/metabolism , Polymerase Chain Reaction/methods , Polysaccharides/metabolism , RNA/chemistry , RNA, Ribosomal, 18S/analysis , RNA, Ribosomal, 18S/genetics
4.
J Environ Manage ; 102: 26-36, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22425876

ABSTRACT

Restoration of highly eroded desert land was attempted in the southern Sonoran Desert that had lost its natural capacity for self-revegetation. In six field experiments, the fields were planted with three native leguminous trees: mesquite amargo Prosopis articulata, and yellow and blue palo verde Parkinsonia microphylla and Parkinsonia florida. Restoration included inoculation with two of plant growth-promoting bacteria (PGPB; Azospirillum brasilense and Bacillus pumilus), native arbuscular mycorrhizal (AM) fungi, and small quantities of compost. Irrigation was applied, when necessary, to reach a rainy year (300 mm) of the area. The plots were maintained for 61 months. Survival of the trees was marginally affected by all supplements after 30 months, in the range of 60-90%. This variation depended on the plant species, where all young trees were established after 3 months. Plant density was a crucial variable and, in general, low plant density enhanced survival. High planting density was detrimental. Survival significantly declined in trees 61 months after planting. No general response of the trees to plant growth-promoting microorganisms and compost was found. Mesquite amargo and yellow palo verde responded well (height, number of branches, and diameter of the main stem) to inoculation with PGPB, AM fungi, and compost supplementation after three months of application. Fewer positive effects were recorded after 30 months. Blue palo verde did not respond to most treatments and had the lowest survival. Specific plant growth parameters were affected to varying degrees to inoculations or amendments, primarily depending on the tree species. Some combinations of tree/inoculant/amendment resulted in small negative effects or no response when measured after extended periods of time. Using native leguminous trees, this study demonstrated that restoration of severely eroded desert lands was possible.


Subject(s)
Azospirillum brasilense/physiology , Bacillus/physiology , Conservation of Natural Resources/methods , Mycorrhizae/physiology , Soil , Trees/microbiology , Agricultural Irrigation , Desert Climate , Trees/growth & development
5.
Arch Microbiol ; 193(7): 527-41, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21445557

ABSTRACT

The small cactus Mammillaria fraileana is a pioneer rock-colonizing plant harboring endophytic bacteria with the potential for nitrogen fixation and rock weathering (phosphate solubilization and rock degradation). In seeds, only a combination of culture-independent methods, such as fluorescence in situ hybridization, scanning electron microscopy, and fluorescence vital staining, detected significant amounts of non-culturable, but living, endophytic bacteria distributed underneath the membrane covering the embryo, in the undifferentiated tissue of the embryo, and in the vascular tissue. Large populations of culturable endophytic bacteria were detected in stems and roots of wild plants colonizing rocks in the southern Sonoran Desert, but not in seeds. Among 14 endophytic bacterial isolates found in roots, four isolates were identified by full sequencing of their 16S rRNA gene. In vitro tests indicated that Azotobacter vinelandii M2Per is a potent nitrogen fixer. Solubilization of inorganic phosphate was exhibited by Pseudomonas putida M5TSA, Enterobacter sakazakii M2PFe, and Bacillus megaterium M1PCa, while A. vinelandii M2Per, P. putida M5TSA, and B. megaterium M1PCa weathered rock by reducing the size of rock particles, probably by changing the pH of the liquid media. Cultivated seedlings of M. fraileana, derived from disinfected seeds and inoculated with endophytic bacteria, showed re-colonization 105 days after inoculation. Their densities decreased from the root toward the stem and apical zones. Functional traits in planta of culturable and non-culturable endophytic bacteria in seeds remain unknown.


Subject(s)
Bacteria/isolation & purification , Cactaceae/microbiology , Nitrogen Fixation , Phosphates/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , DNA, Bacterial/genetics , Desert Climate , In Situ Hybridization, Fluorescence , Mexico , Microscopy, Electron, Scanning , Plant Roots/microbiology , Plant Stems/microbiology , RNA, Ribosomal, 16S/genetics , Seeds/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...