Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 11: 597944, 2020.
Article in English | MEDLINE | ID: mdl-33488543

ABSTRACT

A wines' terroir, represented as wine traits with regional distinctiveness, is a reflection of both the biophysical and human-driven conditions in which the grapes were grown and wine made. Soil is an important factor contributing to the uniqueness of a wine produced by vines grown in specific conditions. Here, we evaluated the impact of environmental variables on the soil bacteria of 22 Barossa Valley vineyard sites based on the 16S rRNA gene hypervariable region 4. In this study, we report that both dispersal isolation by geographic distance and environmental heterogeneity (soil plant-available P content, elevation, rainfall, temperature, spacing between row and spacing between vine) contribute to microbial community dissimilarity between vineyards. Vineyards located in cooler and wetter regions showed lower beta diversity and a higher ratio of dominant taxa. Differences in soil bacterial community composition were significantly associated with differences in fruit and wine composition. Our results suggest that environmental factors affecting wine terroir, may be mediated by changes in microbial structure, thus providing a basic understanding of how growing conditions affect interactions between plants and their soil bacteria.

2.
Int J Mol Sci ; 14(4): 6674-89, 2013 Mar 26.
Article in English | MEDLINE | ID: mdl-23531533

ABSTRACT

Transgenerational inheritance of abiotic stress-induced epigenetic modifications in plants has potential adaptive significance and might condition the offspring to improve the response to the same stress, but this is at least partly dependent on the potency, penetrance and persistence of the transmitted epigenetic marks. We examined transgenerational inheritance of low Relative Humidity-induced DNA methylation for two gene loci in the stomatal developmental pathway in Arabidopsis thaliana and the abundance of associated short-interfering RNAs (siRNAs). Heritability of low humidity-induced methylation was more predictable and penetrative at one locus (SPEECHLESS, entropy ≤ 0.02; χ2 < 0.001) than the other (FAMA, entropy ≤ 0.17; χ2 ns). Methylation at SPEECHLESS correlated positively with the continued presence of local siRNAs (r2 = 0.87; p = 0.013) which, however, could be disrupted globally in the progeny under repeated stress. Transgenerational methylation and a parental low humidity-induced stomatal phenotype were heritable, but this was reversed in the progeny under repeated treatment in a previously unsuspected manner.


Subject(s)
DNA Methylation/genetics , Genes, Plant , Humidity , Inheritance Patterns/genetics , Plant Stomata/genetics , Arabidopsis/genetics , Base Pairing/genetics , Base Sequence , Entropy , Gene Expression Regulation, Plant , Molecular Sequence Data , Phenotype , RNA, Small Interfering/metabolism , Stress, Physiological/genetics
3.
Anal Chem ; 84(17): 7336-42, 2012 Sep 04.
Article in English | MEDLINE | ID: mdl-22882125

ABSTRACT

High resolution melting (HRM) can detect and quantify the presence of 5-methylcytosine (5mC) in DNA samples, but the ability of HRM to diagnose other DNA modifications remains unexplored. The DNA bases N6-methyladenine and 5-hydroxymethylcytosine occur across almost all phyla. While their function remains controversial, their presence perturbs DNA structure. Such modifications could affect gene regulation, chromatin condensation and DNA packaging. Here, we reveal that DNA containing N6-methyladenine or 5-hydroxymethylcytosine exhibits reduced thermal stability compared to cytosine-methylated DNA. These thermostability changes are sufficiently divergent to allow detection and quantification by HRM analysis. Thus, we report that HRM distinguishes between sequence-identical DNA differing only in the modification type of one base. This approach is also able to distinguish between two DNA fragments carrying both N6-methyladenine and 5-methylcytosine but differing only in the distance separating the modified bases. This finding provides scope for the development of new methods to characterize DNA chemically and to allow for low cost screening of mutant populations of genes involved in base modification. More fundamentally, contrast between the thermostabilizing effects of 5mC on dsDNA compared with the destabilizing effects of N6-methyladenine (m6A) and 5-hydroxymethylcytosine (5hmC) raises the intriguing possibility of an antagonistic relationship between modification types with functional significance.


Subject(s)
Cytosine/analogs & derivatives , DNA/chemistry , 5-Methylcytosine/chemical synthesis , 5-Methylcytosine/chemistry , Adenine/chemical synthesis , Adenine/chemistry , Cluster Analysis , Cytosine/chemical synthesis , Cytosine/chemistry , DNA/metabolism , Nucleic Acid Denaturation , Phase Transition , Principal Component Analysis , Transition Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...