Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Exp Bot ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989813

ABSTRACT

In the current context of global warming, high temperature events are becoming more frequent and intense in many places around the world. In this context, understanding how plants sense and respond to heat is essential to develop new tools to prevent plant damage and address global food security, as high temperature events are threatening agricultural sustainability. This review summarizes and integrates our current understanding underlying the cellular, physiological, biochemical and molecular regulatory pathways triggered in plants under moderately high and extremely high temperature conditions. Given that extremely high temperatures can also trigger ferroptosis, the study of this cell death mechanism constitutes a strategic approach to understand how plants might overcome otherwise lethal temperature events.

2.
Biochem J ; 479(7): 857-866, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35438135

ABSTRACT

Regulated cell death (RCD) is an essential process that plays key roles along the plant life cycle. Unlike accidental cell death, which is an uncontrolled biological process, RCD involves integrated signaling cascades and precise molecular-mediated mechanisms that are triggered in response to specific exogenous or endogenous stimuli. Ferroptosis is a cell death pathway characterized by the iron-dependent accumulation of lipid reactive oxygen species. Although first described in animals, ferroptosis in plants shares all the main core mechanisms observed for ferroptosis in other systems. In plants as in animals, oxidant and antioxidant systems outline the process of lipid peroxidation during ferroptosis. In plants, cellular compartments such as mitochondria, chloroplasts and cytosol act cooperatively and coordinately to respond to changing redox environments. This particular context makes plants a unique model to study redox status regulation and cell death. In this review, we focus on our most recent understanding of the regulation of redox state and lipid peroxidation in plants and their role during ferroptosis.


Subject(s)
Ferroptosis , Animals , Iron/metabolism , Lipid Peroxidation , Oxidation-Reduction , Reactive Oxygen Species/metabolism
3.
J Exp Bot ; 72(6): 2125-2135, 2021 03 17.
Article in English | MEDLINE | ID: mdl-32918080

ABSTRACT

Regulated cell death plays key roles during essential processes throughout the plant life cycle. It takes part in specific developmental programs and maintains homeostasis of the organism in response to unfavorable environments. Ferroptosis is a recently discovered iron-dependent cell death pathway characterized by the accumulation of lipid reactive oxygen species. In plants, ferroptosis shares all the main hallmarks described in other systems. Those specific features include biochemical and morphological signatures that seem to be conserved among species. However, plant cells have specific metabolic pathways and a high degree of metabolic compartmentalization. Together with their particular morphology, these features add more complexity to the plant ferroptosis pathway. In this review, we summarize the most recent advances in elucidating the roles of ferroptosis in plants, focusing on specific triggers, the main players, and underlying pathways.


Subject(s)
Ferroptosis , Cell Death , Iron , Lipid Peroxidation , Reactive Oxygen Species
4.
Plant Cell Environ ; 44(7): 2134-2149, 2021 07.
Article in English | MEDLINE | ID: mdl-33058168

ABSTRACT

Sensing and response to high temperatures are crucial to prevent heat-related damage and to preserve cellular and metabolic functions. The response to heat stress is a complex and coordinated process that involves several subcellular compartments and multi-level regulatory networks that are synchronized to avoid cell damage while maintaining cellular homeostasis. In this review, we provide an insight into the most recent advances in elucidating the molecular mechanisms involved in heat stress sensing and response in Marchantia polymorpha. Based on the signaling pathways and genes that were identified in Marchantia, our analyses indicate that although with specific particularities, the core components of the heat stress response seem conserved in bryophytes and angiosperms. Liverworts not only constitute a powerful tool to study heat stress response and signaling pathways during plant evolution, but also provide key and simple mechanisms to cope with extreme temperatures. Given the increasing prevalence of high temperatures around the world as a result of global warming, this knowledge provides a new set of molecular tools with potential agronomical applications.


Subject(s)
Heat-Shock Response/physiology , Marchantia/physiology , Plant Growth Regulators/metabolism , Reactive Oxygen Species/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
5.
Front Plant Sci ; 11: 599247, 2020.
Article in English | MEDLINE | ID: mdl-33329663

ABSTRACT

In flowering plants, pollen tubes undergo a journey that starts in the stigma and ends in the ovule with the delivery of the sperm cells to achieve double fertilization. The pollen cell wall plays an essential role to accomplish all the steps required for the successful delivery of the male gametes. This extended path involves female tissue recognition, rapid hydration and germination, polar growth, and a tight regulation of cell wall synthesis and modification, as its properties change not only along the pollen tube but also in response to guidance cues inside the pistil. In this review, we focus on the most recent advances in elucidating the molecular mechanisms involved in the regulation of cell wall synthesis and modification during pollen germination, pollen tube growth, and rupture.

SELECTION OF CITATIONS
SEARCH DETAIL
...