Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Photosynth Res ; 155(2): 159-175, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36462093

ABSTRACT

Ledflex is a fluorometer adapted to measure chlorophyll fluorescence at the canopy level. It has been described in detail by Moya et al. (2019), Photosynthesis Research. https://doi.org/10.1007/s11120-019-00642-9 . We used this instrument to determine the effect of water stress on the fluorescence of a fescue field under extreme temperature and light conditions through a 12 days campaign during summer in a Mediterranean area. The fescue field formed part of a lysimeter station in "las Tiesas," near Albacete-Spain. In addition to the fluorescence data, the surface temperature was measured using infrared radiometers. Furthermore, "Airflex," a passive fluorometer measuring the filling-in of the atmospheric oxygen absorption band at 760 nm, was installed in an ultralight plane and flown during the most critical days of the campaign. We observed with the Ledflex fluorometer a considerable decrease of about 53% of the stationary chlorophyll fluorescence level at noon under water stress, which was well correlated with the surface temperature difference between the stressed and control plots. Airflex data also showed a decrease in far-red solar-induced fluorescence upon water stress in agreement with surface temperature data and active fluorescence measurements after correction for PS I contribution. Notwithstanding, the results from airborne remote sensing are not as precise as in situ active data.


Subject(s)
Chlorophyll , Dehydration , Humans , Fluorescence , Photosynthesis , Sunlight
2.
Photosynth Res ; 142(1): 1-15, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31129867

ABSTRACT

LEDFLEX is a micro-lidar dedicated to the measurement of vegetation fluorescence. The light source consists of 4 blue Light-Emitting Diodes (LED) to illuminate part of the canopy in order to average the spatial variability of small crops. The fluorescence emitted in response to a 5-µs width pulse is separated from the ambient light through a synchronized detection. Both the reflectance and the fluorescence of the target are acquired simultaneously in exactly the same field of view, as well as the photosynthetic active radiation and air temperature. The footprint is about 1 m2 at a distance of 8 m. By increasing the number of LEDs longer ranges can be reached. The micro-lidar has been successfully applied under full sunlight conditions to establish the signature of water stress on pea (Pisum Sativum) canopy. Under well-watered conditions the diurnal cycle presents an M shape with a minimum (Fmin) at noon which is Fmin > Fo. After several days withholding watering, Fs decreases and Fmin < Fo. The same patterns were observed on mint (Menta Spicata) and sweet potatoes (Ipomoea batatas) canopies. Active fluorescence measurements with LEDFLEX produced robust fluorescence yield data as a result of the constancy of the excitation intensity and its geometry fixity. Passive methods based on Sun-Induced chlorophyll Fluorescence (SIF) that uses high-resolution spectrometers generate only flux data and are dependent on both the 3D structure of vegetation and variable irradiance conditions along the day. Parallel measurements with LEDFLEX should greatly improve the interpretation of SIF changes.


Subject(s)
Chlorophyll/metabolism , Holcus/metabolism , Mentha/metabolism , Stress, Physiological , Chlorophyll/radiation effects , Crops, Agricultural , Fluorescence , Holcus/radiation effects , Mentha/radiation effects , Photosynthesis/physiology , Plant Leaves/physiology , Plant Leaves/radiation effects , Sunlight , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...