Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
PeerJ ; 12: e16797, 2024.
Article in English | MEDLINE | ID: mdl-38529306

ABSTRACT

The topographical, geological, climatic and biodiversity complexity of Mesoamerica has made it a primary research focus. The Mesoamerican highlands is a region with particularly high species richness and within-species variation. The Cinnamon-bellied Flowerpiercer, Diglossa baritula (Wagler, 1832), is a species endemic to the Mesoamerican highlands, with three allopatric subspecies currently recognized. To characterize divergence within this species, we integrated genomics, morphology, coloration and ecological niche modeling approaches, obtained from sampling individuals across the entire geographic distribution of the species. Our results revealed a clear genomic divergence between the populations to the east versus the west of the Isthmus of Tehuantepec. In contrast to the genomic results, morphology and coloration analyses showed intermediate levels of differentiation, indicating that population groups within D. baritula have probably been under similar selective pressures. Our morphology results indicated that the only sexually dimorphic morphological variable is the wing chord, with males having a longer wing chord than females. Finally, ecological data indicated that there are differences in ecological niche within D. baritula. Our data suggest that D. baritula could contain two or more incipient species at the intermediate phase of the speciation continuum. These results highlight the importance of the geographical barrier of the Isthmus of Tehuantepec and Pleistocene climatic events in driving isolation and population divergence in D. baritula. The present investigation illustrates the speciation potential of the D. baritula complex and the capacity of Mesoamerican highlands to create cryptic biodiversity and endemism.


Subject(s)
Birds , Ecosystem , Animals , Female , Male , Biodiversity , Geography , Phylogeny
2.
Zookeys ; 1188: 169-195, 2024.
Article in English | MEDLINE | ID: mdl-38230381

ABSTRACT

Factors such as the Andean uplift, Isthmus of Panama, and climate changes have influenced bird diversity in the Neotropical region. Studying bird species that are widespread in Neotropical highlands and lowlands can help us understand the impact of these factors on taxa diversification. Our main objectives were to determine the biogeographic factors that contributed to the diversification of Euphoniinae and re-evaluate their phylogenetic relationships. The nextRAD and mitochondrial data were utilized to construct phylogenies. The ancestral distribution range was then estimated using a time-calibrated phylogeny, current species ranges, and neotropical regionalization. The phylogenies revealed two main Euphoniinae clades, Chlorophonia and Euphonia, similar to previous findings. Furthermore, each genus has distinctive subclades corresponding to morphology and geography. The biogeographic results suggest that the Andean uplift and the establishment of the western Amazon drove the vicariance of Chlorophonia and Euphonia during the Miocene. The Chlorophonia lineage originated in the Andes mountains and spread to Central America and the Mesoamerican highlands after the formation of the Isthmus of Panama. Meanwhile, the ancestral area of Euphonia was the Amazonas, from which it spread to trans-Andean areas during the Pliocene and Pleistocene due to the separation of the west lowlands from Amazonas due to the Northern Andean uplift. Chlorophonia and Euphonia species migrated to the Atlantic Forest during the Pleistocene through corridors from the East Andean Humid Forest and Amazonas. These two genera had Caribbean invasions with distinct geographic origins and ages. Finally, we suggested taxonomic changes in the genus Euphonia based on the study's phylogenetic, morphological, and biogeographic findings.

3.
J Extracell Biol ; 2(10): e117, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38939734

ABSTRACT

Parasites are responsible for the most neglected tropical diseases, affecting over a billion people worldwide (WHO, 2015) and accounting for billions of cases a year and responsible for several millions of deaths. Research on extracellular vesicles (EVs) has increased in recent years and demonstrated that EVs shed by pathogenic parasites interact with host cells playing an important role in the parasite's survival, such as facilitation of infection, immunomodulation, parasite adaptation to the host environment and the transfer of drug resistance factors. Thus, EVs released by parasites mediate parasite-parasite and parasite-host intercellular communication. In addition, they are being explored as biomarkers of asymptomatic infections and disease prognosis after drug treatment. However, most current protocols used for the isolation, size determination, quantification and characterization of molecular cargo of EVs lack greater rigor, standardization, and adequate quality controls to certify the enrichment or purity of the ensuing bioproducts. We are now initiating major guidelines based on the evolution of collective knowledge in recent years. The main points covered in this position paper are methods for the isolation and molecular characterization of EVs obtained from parasite-infected cell cultures, experimental animals, and patients. The guideline also includes a discussion of suggested protocols and functional assays in host cells.

4.
Front Psychol ; 13: 906072, 2022.
Article in English | MEDLINE | ID: mdl-36389475

ABSTRACT

From March to September 2020, researchers working at a biomedical scientific campus in Spain faced two lockdowns and various mobility restrictions that affected their social and professional lifestyles. The working group "Women in Science," which acts as an independent observatory of scientific gender inequalities on campus launched an online survey to assess the impact of COVID-19 lockdowns on scientific activity, domestic and caregiving tasks, and psychological status. The survey revealed differences in scientific performance by gender: while male researchers participated in a larger number of scientific activities for career development, female researchers performed more invisible scientific tasks, including peer review or outreach activities. Mental impact was greater in researchers caring for children or dependents, and this was aggravated for women. Results spot a disproportionate impact of COVID-19 lockdowns on female scientific career development, and urges for equity measures to mitigate the consequences of an increase in the gender gap in biomedical sciences for current and future pandemics.

5.
Front Cell Dev Biol ; 10: 979269, 2022.
Article in English | MEDLINE | ID: mdl-36172271

ABSTRACT

One peculiarity of protists belonging to classes Kinetoplastea and Diplonemea within the phylum Euglenozoa is compartmentalisation of most glycolytic enzymes within peroxisomes that are hence called glycosomes. This pathway is not sequestered in peroxisomes of the third Euglenozoan class, Euglenida. Previous analysis of well-studied kinetoplastids, the 'TriTryps' parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp., identified within glycosomes other metabolic processes usually not present in peroxisomes. In addition, trypanosomatid peroxins, i.e. proteins involved in biogenesis of these organelles, are divergent from human and yeast orthologues. In recent years, genomes, transcriptomes and proteomes for a variety of euglenozoans have become available. Here, we track the possible evolution of glycosomes by querying these databases, as well as the genome of Naegleria gruberi, a non-euglenozoan, which belongs to the same protist supergroup Discoba. We searched for orthologues of TriTryps proteins involved in glycosomal metabolism and biogenesis. Predicted cellular location(s) of each metabolic enzyme identified was inferred from presence or absence of peroxisomal-targeting signals. Combined with a survey of relevant literature, we refine extensively our previously postulated hypothesis about glycosome evolution. The data agree glycolysis was compartmentalised in a common ancestor of the kinetoplastids and diplonemids, yet additionally indicates most other processes found in glycosomes of extant trypanosomatids, but not in peroxisomes of other eukaryotes were either sequestered in this ancestor or shortly after separation of the two lineages. In contrast, peroxin divergence is evident in all euglenozoans. Following their gain of pathway complexity, subsequent evolution of peroxisome/glycosome function is complex. We hypothesize compartmentalisation in glycosomes of glycolytic enzymes, their cofactors and subsequently other metabolic enzymes provided selective advantage to kinetoplastids and diplonemids during their evolution in changing marine environments. We contend two specific properties derived from the ancestral peroxisomes were key: existence of nonselective pores for small solutes and the possibility of high turnover by pexophagy. Critically, such pores and pexophagy are characterised in extant trypanosomatids. Increasing amenability of free-living kinetoplastids and recently isolated diplonemids to experimental study means our hypothesis and interpretation of bioinformatic data are suited to experimental interrogation.

6.
J Immunol Res ; 2022: 5230603, 2022.
Article in English | MEDLINE | ID: mdl-36033396

ABSTRACT

Chagas disease, caused by the protozoa parasite Trypanosoma cruzi, is a neglected tropical disease and a major public health problem affecting more than 6 million people worldwide. Many challenges remain in the quest to control Chagas disease: the diagnosis presents several limitations and the two available treatments cause several side effects, presenting limited efficacy during the chronic phase of the disease. In addition, there are no preventive vaccines or biomarkers of therapeutic response or disease outcome. Trypomastigote form and T. cruzi-infected cells release extracellular vesicles (EVs), which are involved in cell-to-cell communication and can modulate the host immune response. Importantly, EVs have been described as promising tools for the development of new therapeutic strategies, such as vaccines, and for the discovery of new biomarkers. Here, we review and discuss the role of EVs secreted during T. cruzi infection and their immunomodulatory properties. Finally, we briefly describe their potential for biomarker discovery and future perspectives as vaccine development tools for Chagas Disease.


Subject(s)
Chagas Disease , Extracellular Vesicles , Trypanosoma cruzi , Biomarkers , Humans , Immunity
7.
Mol Cell Proteomics ; 21(10): 100406, 2022 10.
Article in English | MEDLINE | ID: mdl-36030044

ABSTRACT

Latent liver stages termed hypnozoites cause relapsing Plasmodium vivax malaria infection and represent a major obstacle in the goal of malaria elimination. Hypnozoites are clinically undetectable, and presently, there are no biomarkers of this persistent parasite reservoir in the human liver. Here, we have identified parasite and human proteins associated with extracellular vesicles (EVs) secreted from in vivo infections exclusively containing hypnozoites. We used P. vivax-infected human liver-chimeric (huHEP) FRG KO mice treated with the schizonticidal experimental drug MMV048 as hypnozoite infection model. Immunofluorescence-based quantification of P. vivax liver forms showed that MMV048 removed schizonts from chimeric mice livers. Proteomic analysis of EVs derived from FRG huHEP mice showed that human EV cargo from infected FRG huHEP mice contain inflammation markers associated with active schizont replication and identified 66 P. vivax proteins. To identify hypnozoite-specific proteins associated with EVs, we mined the proteome data from MMV048-treated mice and performed an analysis involving intragroup and intergroup comparisons across all experimental conditions followed by a peptide compatibility analysis with predicted spectra to warrant robust identification. Only one protein fulfilled this stringent top-down selection, a putative filamin domain-containing protein. This study sets the stage to unveil biological features of human liver infections and identify biomarkers of hypnozoite infection associated with EVs.


Subject(s)
Extracellular Vesicles , Malaria, Vivax , Parasites , Humans , Mice , Animals , Malaria, Vivax/drug therapy , Malaria, Vivax/parasitology , Plasmodium vivax , Proteomics , Proteome , Filamins , Liver , Biomarkers , Mass Spectrometry
8.
Cells ; 11(12)2022 06 10.
Article in English | MEDLINE | ID: mdl-35741019

ABSTRACT

Zellweger spectrum disorder (ZSD) is a rare, debilitating genetic disorder of peroxisome biogenesis that affects multiple organ systems and presents with broad clinical heterogeneity. Although severe, intermediate, and mild forms of ZSD have been described, these designations are often arbitrary, presenting difficulty in understanding individual prognosis and treatment effectiveness. The purpose of this study is to conduct a scoping review and meta-analysis of existing literature and a medical chart review to determine if characterization of clinical findings can predict severity in ZSD. Our PubMed search for articles describing severity, clinical findings, and survival in ZSD resulted in 107 studies (representing 307 patients) that were included in the review and meta-analysis. We also collected and analyzed these same parameters from medical records of 136 ZSD individuals from our natural history study. Common clinical findings that were significantly different across severity categories included seizures, hypotonia, reduced mobility, feeding difficulties, renal cysts, adrenal insufficiency, hearing and vision loss, and a shortened lifespan. Our primary data analysis also revealed significant differences across severity categories in failure to thrive, gastroesophageal reflux, bone fractures, global developmental delay, verbal communication difficulties, and cardiac abnormalities. Univariable multinomial logistic modeling analysis of clinical findings and very long chain fatty acid (VLCFA) hexacosanoic acid (C26:0) levels showed that the number of clinical findings present among seizures, abnormal EEG, renal cysts, and cardiac abnormalities, as well as plasma C26:0 fatty acid levels could differentiate severity categories. We report the largest characterization of clinical findings in relation to overall disease severity in ZSD. This information will be useful in determining appropriate outcomes for specific subjects in clinical trials for ZSD.


Subject(s)
Kidney Diseases, Cystic , Zellweger Syndrome , Fatty Acids , Humans , Membrane Proteins/genetics , Seizures , Zellweger Syndrome/diagnosis
9.
J Eukaryot Microbiol ; 69(6): e12897, 2022 11.
Article in English | MEDLINE | ID: mdl-35175680

ABSTRACT

Kinetoplastea and Diplonemea possess peroxisome-related organelles that, uniquely, contain most of the enzymes of the glycolytic pathway and are hence called glycosomes. Enzymes of several other core metabolic pathways have also been located in glycosomes, in addition to some characteristic peroxisomal systems such as pathways of lipid metabolism. A considerable amount of research has been performed on glycosomes of trypanosomes since their discovery four decades ago. Not only the role of the glycosomal enzyme systems in the overall cell metabolism appeared to be unique, but also the organelles display remarkable features regarding their biogenesis and structural properties. These features are similar to those of the well-studied peroxisomes of mammalian and plant cells and yeasts yet exhibit also differences reflecting the large evolutionary distance between these protists and the representatives of other major eukaryotic lineages. Despite all research performed, many questions remain about various properties and the biological roles of glycosomes and peroxisomes. Here, we review the current knowledge about glycosomes, often comparing it with information about peroxisomes. Furthermore, we highlight particularly many questions that remain about the biogenesis, and the heterogeneity in structure and content of these enigmatic organelles, and the properties of their boundary membrane.


Subject(s)
Microbodies , Trypanosoma , Animals , Microbodies/metabolism , Peroxisomes/metabolism , Trypanosoma/metabolism , Euglenozoa , Homeostasis , Mammals
10.
PeerJ ; 10: e12901, 2022.
Article in English | MEDLINE | ID: mdl-35198262

ABSTRACT

Animals derive their coloration from a variety of pigments as well as non-pigmentary structural features. One of the most widespread types of pigments are carotenoids, which are used by all invertebrate taxa and most vertebrate orders to generate red, pink, orange and yellow coloration. Despite their widespread use by diverse animal groups, animals obligately obtain carotenoid pigments from diet. Carotenoid-based coloration is therefore modulated by evolutionary and ecological processes that affect the acquisition and deposition of these pigments into tegumentary structures. The Flame-colored Tanager (Piranga bidentata) is a highland songbird in the cardinal family (Cardinalidae) that is distributed from Mexican sierras through Central America up to western Panama. While female plumage throughout its entire range is predominantly yellow, males exhibit a noticeable split in ventral plumage color, which is bright orange on the West slope and the Tres Marias Islands and blood red in Eastern Mexico and Central America. We used Multiple Regression on Matrices (MRM) to evaluate the relative contributions of geographic distance, climate and genetic distance on color divergence and body differences between geographically disjunct populations. We found that differentiation in carotenoid plumage coloration was mainly explained by rainfall differences between disjunct populations, whereas body size differences was best explained by variation in the annual mean temperature and temperature of coldest quarter. These results indicate that climate is a strong driver of phenotypic divergence in Piranga bidentata.


Subject(s)
Passeriformes , Songbirds , Animals , Male , Female , Feathers/chemistry , Pigmentation/genetics , Songbirds/genetics , Passeriformes/genetics , Carotenoids/analysis
11.
Clin Immunol ; 234: 108913, 2022 01.
Article in English | MEDLINE | ID: mdl-34954347

ABSTRACT

Chagas disease has a complex pathogenesis wherein the host immune response is essential for controlling its development. Suppressor of cytokine signaling(SOCS)2 is a crucial protein that regulates cytokine production. In this study, SOCS2 deficiency resulted in an initial imbalance of IL12- and IL-10-producing neutrophils and dendritic cells (DCs), which caused a long-lasting impact reducing inflammatory neutrophils and DCs, and tolerogenic DCs at the peak of acute disease. A reduced number of inflammatory and pro-resolving macrophages, and IL17A-producing CD4+ T cells, and increased lymphocyte apoptosis was found in SOCS2-deficient mice. Electrocardiogram analysis of chimeric mice showed that WT mice that received SOCS2 KO bone marrow transplantation presented increased heart dysfunction. Taken together, the results demonstrated that SOCS2 is a crucial regulator of the immune response during Trypanosoma cruzi infection, and suggest that a SOCS2 genetic polymorphism, or failure of its expression, may increase the susceptibility of cardiomyopathy development in Chagasic patients.


Subject(s)
Cardiomyopathies/etiology , Chagas Disease/immunology , Dendritic Cells/immunology , Neutrophils/immunology , Suppressor of Cytokine Signaling Proteins/physiology , Animals , Bone Marrow Transplantation , Chagas Disease/complications , Female , Mice , Mice, Inbred C57BL , Spleen/immunology , Suppressor of Cytokine Signaling Proteins/genetics , Th17 Cells/immunology
12.
Sci Rep ; 11(1): 22099, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34764379

ABSTRACT

The spleen is a hematopoietic organ that participates in cellular and humoral immunity. It also serves as a quality control mechanism for removing senescent and/or poorly deformable red blood cells (RBCs) from circulation. Pitting is a specialized process by which the spleen extracts particles, including malaria parasites, from within circulating RBCs during their passage through the interendothelial slits (IES) in the splenic cords. To study this physiological function in vitro, we have developed two microfluidic devices modeling the IES, according to the hypothesis that at a certain range of mechanical stress on the RBC, regulated through both slit size and blood flow, would force it undergo the pitting process without affecting the cell integrity. To prove its functionality in replicating pitting of malaria parasites, we have performed a characterization of P. falciparum-infected RBCs (P.f.-RBCs) after their passage through the devices, determining hemolysis and the proportion of once-infected RBCs (O-iRBCs), defined by the presence of a parasite antigen and absence of DAPI staining of parasite DNA using a flow cytometry-based approach. The passage of P.f.-RBCs through the devices at the physiological flow rate did not affect cell integrity and resulted in an increase of the frequency of O-iRBCs. Both microfluidic device models were capable to replicate the pitting of P.f.-RBCs ex vivo by means of mechanical constraints without cellular involvement, shedding new insights on the role of the spleen in the pathophysiology of malaria.


Subject(s)
Endothelium/parasitology , Lab-On-A-Chip Devices/parasitology , Malaria, Falciparum/parasitology , Parasites/physiology , Spleen/parasitology , Animals , Biomimetics/methods , Erythrocytes/parasitology , Hemolysis/physiology , Humans , Plasmodium falciparum/physiology
13.
Clin Immunol ; 226: 108713, 2021 05.
Article in English | MEDLINE | ID: mdl-33711450

ABSTRACT

Current chemical therapies for Chagas Disease (CD) lack ability to clear Trypanosoma cruzi (Tc) parasites and cause severe side effects, making search for new strategies extremely necessary. We evaluated the action of Tityus serrulatus venom (TsV) components during Tc infection. TsV treatment increased nitric oxide and pro-inflammatory cytokine production by Tc-infected macrophages (MØ), decreased intracellular parasite replication and trypomastigotes release, also triggering ERK1/2, JNK1/2 and p38 activation. Ts7 demonstrated the highest anti-Tc activity, inducing high levels of TNF and IL-6 in infected MØ. TsV/Ts7 presented synergistic effect on p38 activation when incubated with Tc antigen. KPP-treatment of MØ also decreased trypomastigotes releasing, partially due to p38 activation. TsV/Ts7-pre-incubation of Tc demonstrated a direct effect on parasite decreasing MØ-trypomastigotes releasing. In vivo KPP-treatment of Tc-infected mice resulted in decreased parasitemia. Summarizing, this study opens perspectives for new bioactive molecules as CD-therapeutic treatment, demonstrating the TsV/Ts7/KPP-trypanocidal and immunomodulatory activity during Tc infection.


Subject(s)
Chagas Disease/drug therapy , Immunomodulation/drug effects , Scorpion Venoms/pharmacology , Scorpions/metabolism , Animals , Chagas Disease/metabolism , Female , Interleukin-6/metabolism , MAP Kinase Signaling System/drug effects , Macrophage Activation/drug effects , Macrophages/drug effects , Mice , Mice, Inbred C57BL , Nitric Oxide/metabolism , Tumor Necrosis Factors/metabolism
14.
Front Cell Infect Microbiol ; 11: 596104, 2021.
Article in English | MEDLINE | ID: mdl-33732657

ABSTRACT

The spleen is a secondary lymphoid organ with multiple functions including the removal of senescent red blood cells and the coordination of immune responses against blood-borne pathogens, such as malaria parasites. Despite the major role of the spleen, the study of its function in humans is limited by ethical implications to access human tissues. Here, we employed multiparameter flow cytometry combined with cell purification techniques to determine human spleen cell populations from transplantation donors. Spleen immuno-phenotyping showed that CD45+ cells included B (30%), CD4+ T (16%), CD8+ T (10%), NK (6%) and NKT (2%) lymphocytes. Myeloid cells comprised neutrophils (16%), monocytes (2%) and DCs (0.3%). Erythrocytes represented 70%, reticulocytes 0.7% and hematopoietic stem cells 0.02%. Extracellular vesicles (EVs) are membrane-bound nanoparticles involved in intercellular communication and secreted by almost all cell types. EVs play several roles in malaria that range from modulation of immune responses to vascular alterations. To investigate interactions of plasma-derived EVs from Plasmodium vivax infected patients (PvEVs) with human spleen cells, we used size-exclusion chromatography (SEC) to separate EVs from the bulk of soluble plasma proteins and stained isolated EVs with fluorescent lipophilic dyes. The integrated cellular analysis of the human spleen and the methodology employed here allowed in vitro interaction studies of human spleen cells and EVs that showed an increased proportion of T cells (CD4+ 3 fold and CD8+ 4 fold), monocytes (1.51 fold), B cells (2.3 fold) and erythrocytes (3 fold) interacting with PvEVs as compared to plasma-derived EVs from healthy volunteers (hEVs). Future functional studies of these interactions can contribute to unveil pathophysiological processes involving the spleen in vivax malaria.


Subject(s)
Extracellular Vesicles , Malaria, Vivax , Flow Cytometry , Humans , Plasmodium vivax , Spleen
15.
Front Cell Infect Microbiol ; 11: 811390, 2021.
Article in English | MEDLINE | ID: mdl-35141172

ABSTRACT

Plasmodium vivax is the most widely distributed human malaria parasite with 7 million annual clinical cases and 2.5 billion people living under risk of infection. There is an urgent need to discover new antigens for vaccination as only two vaccine candidates are currently in clinical trials. Extracellular vesicles (EVs) are small membrane-bound vesicles involved in intercellular communication and initially described in reticulocytes, the host cell of P. vivax, as a selective disposal mechanism of the transferrin receptor (CD71) in the maturation of reticulocytes to erythrocytes. We have recently reported the proteomics identification of P. vivax proteins associated to circulating EVs in P. vivax patients using size exclusion chromatography followed by mass spectrometry (MS). Parasite proteins were detected in only two out of ten patients. To increase the MS signal, we have implemented the direct immuno-affinity capture (DIC) technique to enrich in EVs derived from CD71-expressing cells. Remarkably, we identified parasite proteins in all patients totaling 48 proteins and including several previously identified P. vivax vaccine candidate antigens (MSP1, MSP3, MSP7, MSP9, Serine-repeat antigen 1, and HSP70) as well as membrane, cytosolic and exported proteins. Notably, a member of the Plasmodium helical interspersed sub-telomeric (PHIST-c) family and a member of the Plasmodium exported proteins, were detected in five out of six analyzed patients. Humoral immune response analysis using sera from vivax patients confirmed the antigenicity of the PHIST-c protein. Collectively, we showed that enrichment of EVs by CD71-DIC from plasma of patients, allows a robust identification of P. vivax immunogenic proteins. This study represents a significant advance in identifying new antigens for vaccination against this human malaria parasite.


Subject(s)
Extracellular Vesicles , Malaria, Vivax , Antibodies, Protozoan , Antigens, Protozoan , Erythrocytes/parasitology , Extracellular Vesicles/metabolism , Humans , Malaria, Vivax/parasitology , Plasmodium vivax , Protozoan Proteins/metabolism , Reticulocytes/metabolism , Reticulocytes/parasitology
16.
Mol Genet Metab Rep ; 25: 100694, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33335840

ABSTRACT

Zellweger spectrum disorders (ZSD) are rare, debilitating genetic diseases of peroxisome biogenesis that affect multiple organ systems and present with broad clinical heterogeneity. Although many case studies have characterized the multitude of signs and symptoms associated with ZSD, there are few reports on the prevalence of symptoms to help inform the development of meaningful endpoints for future clinical trials in ZSD. In the present study, we used an online survey tool completed by family caregivers to study the occurrence, frequency and severity of symptoms in individuals diagnosed with ZSD. Responses from caregivers representing 54 living and 25 deceased individuals with ZSD were collected over an 8-month period. Both perception of disease severity and prevalence of various symptoms were greater in responses from family caregivers of deceased individuals compared to those of living individuals with ZSD. Compared with previous reports for ZSD, the combined prevalence of seizures (53%) and adrenal insufficiency (45%) were nearly twice as high. Overall, this community-engaged approach to rare disease data collection is the largest study reporting on the prevalence of symptoms in ZSD, and our findings suggest that previous reports may be underreporting the true prevalence of several symptoms in ZSD. Studies such as this used in conjunction with clinician- led reports may be useful for informing the design of future clinical trials addressing ZSD.

17.
Zookeys ; 952: 129-157, 2020.
Article in English | MEDLINE | ID: mdl-32774114

ABSTRACT

The integration of genetic, morphological, behavioral, and ecological information in the analysis of species boundaries has increased, allowing integrative systematics that better reflect the evolutionary history of biological groups. In this context, the goal of this study was to recognize independent evolutionary lineages within Euphonia affinis at the genetic, morphological, and ecological levels. Three subspecies have been described: E. affinis godmani, distributed in the Pacific slope from southern Sonora to Guerrero; E. affinis affinis, from Oaxaca, Chiapas and the Yucatan Peninsula to Costa Rica; and E. affinis olmecorum from Tamaulipas and San Luis Potosi east to northern Chiapas (not recognized by some authors). A multilocus analysis was performed using mitochondrial and nuclear genes. These analyses suggest two genetic lineages: E. godmani and E. affinis, which diverged between 1.34 and 4.3 My, a period in which the ice ages and global cooling fragmented the tropical forests throughout the Neotropics. To analyze morphometric variations, six morphometric measurements were taken, and the Wilcoxon Test was applied to look for sexual dimorphism and differences between the lineages. Behavioral information was included, by performing vocalization analysis which showed significant differences in the temporal characteristics of calls. Finally, Ecological Niche Models were estimated with MaxEnt, and then compared using the method of Broennimann. These analyses showed that the lineage distributed in western Mexico (E. godmani) has a more restricted niche than the eastern lineage (E. affinis) and thus we rejected the hypotheses of niche equivalence and similarity. Based on the combined evidence from genetic, morphological, behavioral, and ecological data, it is concluded that E. affinis (with E. olmecorum as its synonym) and E. godmani represent two independent evolutionary lineages.

18.
Nat Commun ; 11(1): 2761, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32487994

ABSTRACT

Plasmodium vivax is the most widely distributed human malaria parasite. Previous studies have shown that circulating microparticles during P. vivax acute attacks are indirectly associated with severity. Extracellular vesicles (EVs) are therefore major components of circulating plasma holding insights into pathological processes. Here, we demonstrate that plasma-derived EVs from Plasmodium vivax patients (PvEVs) are preferentially uptaken by human spleen fibroblasts (hSFs) as compared to the uptake of EVs from healthy individuals. Moreover, this uptake induces specific upregulation of ICAM-1 associated with the translocation of NF-kB to the nucleus. After this uptake, P. vivax-infected reticulocytes obtained from patients show specific adhesion properties to hSFs, reversed by inhibiting NF-kB translocation to the nucleus. Together, these data provide physiological EV-based insights into the mechanisms of human malaria pathology and support the existence of P. vivax-adherent parasite subpopulations in the microvasculature of the human spleen.


Subject(s)
Extracellular Vesicles/metabolism , Fibroblasts/metabolism , NF-kappa B/metabolism , Plasma , Plasmodium vivax/physiology , Reticulocytes/metabolism , Spleen/metabolism , Animals , Cell Adhesion , Cell-Derived Microparticles , Disease Models, Animal , Extracellular Vesicles/parasitology , Fibroblasts/pathology , Host-Parasite Interactions/physiology , Humans , Intercellular Adhesion Molecule-1/metabolism , Malaria, Vivax/parasitology , Male , Mice , Mice, Inbred C57BL , Microvessels/parasitology , Proteomics , Reticulocytes/parasitology , Spleen/pathology
19.
Article in English | MEDLINE | ID: mdl-32083023

ABSTRACT

Glycosomes are peroxisome-related organelles that have been identified in kinetoplastids and diplonemids. The hallmark of glycosomes is their harboring of the majority of the glycolytic enzymes. Our biochemical studies and proteome analysis of Trypanosoma cruzi glycosomes have located, in addition to enzymes of the glycolytic pathway, enzymes of several other metabolic processes in the organelles. These analyses revealed many aspects in common with glycosomes from other trypanosomatids as well as features that seem specific for T. cruzi. Their enzyme content indicates that T. cruzi glycosomes are multifunctional organelles, involved in both several catabolic processes such as glycolysis and anabolic ones. Specifically discussed in this minireview are the cross-talk between glycosomal metabolism and metabolic processes occurring in other cell compartments, and the importance of metabolite translocation systems in the glycosomal membrane to enable the coordination between the spatially separated processes. Possible mechanisms for metabolite translocation across the membrane are suggested by proteins identified in the organelle's membrane-homologs of the ABC and MCF transporter families-and the presence of channels as inferred previously from the detection of channel-forming proteins in glycosomal membrane preparations from the related parasite T. brucei. Together, these data provide insight in the way in which different parts of T. cruzi metabolism, although uniquely distributed over different compartments, are integrated and regulated. Moreover, this information reveals opportunities for the development of drugs against Chagas disease caused by these parasites and for which currently no adequate treatment is available.


Subject(s)
Chagas Disease , Trypanosoma brucei brucei , Trypanosoma cruzi , Chagas Disease/metabolism , Glycolysis , Humans , Microbodies , Organelles
20.
Mol Biochem Parasitol ; 229: 62-74, 2019 04.
Article in English | MEDLINE | ID: mdl-30831156

ABSTRACT

In Trypanosoma cruzi, the causal agent of Chagas disease, the first seven steps of glycolysis are compartmentalized in glycosomes, which are authentic but specialized peroxisomes. Besides glycolysis, activity of enzymes of other metabolic processes have been reported to be present in glycosomes, such as ß-oxidation of fatty acids, purine salvage, pentose-phosphate pathway, gluconeogenesis and biosynthesis of ether-lipids, isoprenoids, sterols and pyrimidines. In this study, we have purified glycosomes from T. cruzi epimastigotes, collected the soluble and membrane fractions of these organelles, and separated peripheral and integral membrane proteins by Na2CO3 treatment and osmotic shock. Proteomic analysis was performed on each of these fractions, allowing us to confirm the presence of enzymes involved in various metabolic pathways as well as identify new components of this parasite's glycosomes.


Subject(s)
Microbodies/chemistry , Microbodies/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Trypanosoma cruzi/metabolism , Chagas Disease/parasitology , Life Cycle Stages , Microbodies/genetics , Proteomics , Protozoan Proteins/genetics , Trypanosoma cruzi/chemistry , Trypanosoma cruzi/genetics , Trypanosoma cruzi/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...