Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37447552

ABSTRACT

Poly(3-hydroxybutyrate), PHB, is a hydrophobic biopolymer with good mechanical and barrier properties. However, neat PHB is a semicrystalline polymer with a relative high degree of crystallinity and poor film properties. In this work, this biopolymer was plasticized with glycerol tributyrate and functionalized with copper (II) sulfate, allowing us to obtain biodegradable antimicrobial flexible films. Films with the minimum inhibitory concentration (MIC) of copper (II) sulfate presented a higher roughness than neat PHB films. The presence of plasticizer significantly improved the copper sulfate diffusion process, which was evidenced by a greater inhibition halo for plasticized materials compared to unplasticized ones, at the same salt concentration. Plasticized PHB with 2.5% copper (II) sulfate inhibited both Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomona aeruginosa) bacteria, as determined by the bacterial inhibition halo. In addition, neat PHB films and PHB containing copper (II) sulfate did not show in vitro cytotoxicity in the L-929 cell line. Thus, plasticized PHB functionalized with copper (II) sulfate can be used as biodegradable antimicrobial flexible films for different applications.

2.
Bioresour Bioprocess ; 8(1): 130, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-38650284

ABSTRACT

This work aimed to study the feasibility of using vinasse for polyhydroxybutyrate (PHB) production by Bacillus megaterium. To optimize the culture medium, a Box-Behnken design was employed considering carbon (C), nitrogen (N), and phosphorus (Ph) concentrations as independent variables and PHB productivity as the response variable. The productivity decreased when C or N were increased, probably due to the presence of phenolic compounds and the limitation of N for the production of PHB by Bacillus sp. bacteria. An additional experimental design to optimize the C/N ratio and growing conditions (fermentation time and temperature) was carried out. Fermentation time had a statistically significant effect on PHB productivity reaching 10.6 mg/L h. On the other hand, the variability in physicochemical properties of vinasse samples led to significant differences in PHB productivity. Lower productivity values were obtained when vinasse had higher values of DBO. Therefore, biopolymers production from vinasse is a feasible alternative to valorize this bioethanol by-product.

3.
Heliyon ; 5(6): e01877, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31211261

ABSTRACT

A structural study about the changes induced by plasticization of native corn starch was carried out in this work. The influence of talc nanoparticles presence during starch thermal processing was also evaluated. Macroscopic observation of the granules appearance evolution during melt-mixing and thermo-compression was supported by a theoretical description related to these processing methods. Melt-mixing induced a polymorphic transformation from A- to Vh-type and a reduction in the degree of crystallinity. Homogenous appearance of the plasticized starch was in accordance to the disruption of granules integrity, evidenced by SEM. This observation agreed to the distinctive XRD pattern of plasticized starch from unprocessed granules. Talc incorporation did not require the adjustment of processing parameters in order to obtain a homogenous thermoplastic material, with an adequate particles distribution within the matrix. Regardless talc presence, plasticized starch presented a Vh-type crystalline structure. Thermo-compression led to particles alignment promoted by talc laminar morphology.

4.
Carbohydr Polym ; 134: 205-12, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26428117

ABSTRACT

Final properties of two thermoplastic corn starch matrices were improved by adding poly(ɛ-caprolactone), PCL, at 2.5, 5, and 10% w/w. One of the thermoplastic starch matrices was processed using water and glycerol as plasticizers (SG) and the other one was plasticized with a mixture of glycerol and sodium alginate (SGA). Blends were suitably processed by melt mixing and further injected. Films obtained by thermo-compression were flexible and easy to handle. Microstructure studies (SEM and FTIR) revealed a nice distribution of PCL within both matrices and also a good starch-PCL compatibility, attributed to the lower polyester concentration. The crystalline character of PCL was the responsible of the increment in the degree of crystallinity of starch matrices, determined by XRD. Moreover, it was demonstrated by TGA that PCL incorporation did not affect the thermal stability of these starch-based materials. In addition, a shift of Tg values of both glycerol and starch-rich phases to lower values was determined by DSC and DMA tests, attributed to the PCL plasticizing action. Besides, PCL blocking effect to visible and UV radiations was evident by the incremented opacity and the UV-barrier capacity of the starch films. Finally, water vapor permeability and water solubility values were reduced by PCL incorporation.


Subject(s)
Polyesters/chemistry , Starch/chemistry , Starch/ultrastructure , Alginates/chemistry , Crystallization , Glucuronic Acid/chemistry , Glycerol/chemistry , Hexuronic Acids/chemistry , Permeability , Plasticizers/chemistry , Steam/analysis , Temperature , Transition Temperature , Water/chemistry , Zea mays/chemistry
5.
Carbohydr Polym ; 126: 83-90, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-25933526

ABSTRACT

Corn starch melt-processing in the presence of a commonly used plasticizer mixture (water/glycerol) and a non-conventional alternative (alginate/glycerol) was evaluated. All assayed formulations were successfully processed by melt-mixing and injected in circular probes. It was determined that all samples presented a typical viscoelastic behavior, observing a decrease in storage and loss modulus with water and alginate concentration, which facilitated samples processability. Concerning to thermal stability, it was not affected neither for water nor alginate presence. From injected probes, flexible films were obtained by thermo-compression. Films with the highest assayed water content presented a sticky appearance, whereas those containing alginate were non-tacky. Plasticizing action of water and alginate was evidenced by the occurrence of homogeneous fracture surfaces, without the presence of unmelted starch granules. Besides, the shift of glass transition temperature to lower values also corroborated the plasticizing effect of both additives. In conclusion, obtained results demonstrated the well-plasticizing action of sodium alginate on starch matrix, turning this additive into a promissory alternative to replace water during melt-processing of thermoplastic corn-starch.


Subject(s)
Alginates/chemistry , Glycerol/chemistry , Plasticizers/chemistry , Starch/chemistry , Zea mays/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Transition Temperature , Water/chemistry
6.
Mater Sci Eng C Mater Biol Appl ; 33(3): 1583-91, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23827611

ABSTRACT

Active starch films with glycerol and potassium sorbate were obtained by casting. Native and acetylated corn starches, as well as the mixture of them in equal proportions were used and filmogenic suspensions with pH 4.5 were also prepared. Sorbate concentration decreased during film storage due to its oxidative degradation. Active films resulted more yellow and less transparent than films without sorbate. The minimum inhibitory concentration of sorbate resulted 0.3%, regardless of the starch type and the formulation pH. The use of antimicrobial package was more effective to prevent microbial growth on food surfaces than the use of conventional methods. Additive kinetic release was neither affected by the starch type nor by the formulation pH. Sorbate diffusion process was mathematically modeled satisfactorily. Active films were able to inhibit Candida spp., Penicillium spp., S. aureus and Salmonella spp. growth. Active films extended 21% the shelf life of refrigerated cheese, regardless of the formulation pH.


Subject(s)
Sorbic Acid/pharmacology , Starch/chemistry , Zea mays/chemistry , Anti-Infective Agents/pharmacology , Bacteria/drug effects , Cheese , Color , Delayed-Action Preparations/pharmacology , Diffusion , Fungi/drug effects , Fungi/growth & development , Gels , Humidity , Microbial Sensitivity Tests , Solutions , Surface Properties
7.
Mater Sci Eng C Mater Biol Appl ; 32(7): 1931-1940, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-34062678

ABSTRACT

Biodegradable films from ahipa, cassava and corn native starches were developed by casting method and their physicochemical, mechanical and barrier properties were analyzed taking into account the different starch botanical sources. Filmogenic suspensions were prepared; their rheological behaviors were studied and all of them exhibited film-forming ability. However, mechanical assays demonstrated that unplasticized films were too rigid, limiting their technological applications. Thus, 1.5% w/w of glycerol as plasticizer was added to filmogenic suspensions and film flexibility and extensibility were improved, this effect was more significant for ahipa and cassava starch films. Furthermore, thickness, moisture content and water solubility of the developed films were increased when plasticizer was incorporated. Glycerol addition reduced film water vapor permeability and the lowest reduction corresponded to cassava starch films due to the high viscosity of its filmogenic suspensions. Plasticized starch films resulted to be UV radiation barriers; ahipa starch films had the lowest light absorption capacity and higher transparency than cassava and corn starch films. Dynamic-mechanical analysis indicated that plasticized films were partially miscible systems exhibiting two relaxations, one attributed to the starch-rich phase and the other to the glycerol-rich one. Likewise, it could be demonstrated that glycerol exerted a major plasticizing effect on ahipa starch matrixes.

8.
Carbohydr Polym ; 73(4): 573-81, 2008 Sep 05.
Article in English | MEDLINE | ID: mdl-26048223

ABSTRACT

Native starch can be chemically modified to improve its functionality and to expand its uses. Modified starches were characterized and the rheological behavior of filmogenic suspensions was analyzed. The film forming capacity of different chemical modified corn starches was evaluated. Acetylated starch was selected by the characteristics of the resulted films; its optimum concentration was 5% w/w since their films exhibited the lowest water vapor permeability (WVP, 1.26×10(-10)g/msPa). The effect of glycerol as plasticizer on film properties depend on its concentration, being 1.5% w/w those that allows to obtain the lowest WVP value (1.64×10(-11)g/msPa), low film solubility in water and a more compact structure than those of unplasticized films. Mechanical behavior of plasticized acetylated starch films depends on glycerol concentration, being rigid and brittle the unplasticized ones, ductile those containing 1.5% w/w of glycerol and very flexible those with a higher plasticizer content.

SELECTION OF CITATIONS
SEARCH DETAIL
...