Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
Nutr Hosp ; 34(5): 1089-1098, 2017 Oct 24.
Article in English | MEDLINE | ID: mdl-29130706

ABSTRACT

INTRODUCTION: Androgens play a major role in fat oxidation; however, the effects of androgens depend, among other factors, on the intrinsic characteristics of the androgen receptor (AR). Lower repetitions of CAG and GGN polymorphism appear to have a protective effect on fat accumulation in the transition from adolescent to mid-twenties. Whether a similar protective effect is present later in life remains unknown. The aims of this study were: a) to evaluate if extreme CAG and GGN repeat polymorphisms of the androgen receptors influence body fat mass, its regional distribution, resting metabolic rate (RMR), maximal fat oxidation capacity (MFO) and serum leptin, free testosterone and osteocalcin in healthy adult men; and b) to determine the longitudinal effects on fat tissue accumulation after 6.4 years of follow-up. METHODS: CAG and GGN repeats length were measured in 319 healthy men (mean ± standard deviation [SD]: 28.3 ± 7.6 years). From these, we selected the subjects with extreme short (CAGS < or equal 19; n = 7) and long (CAGL > or equal 24; n = 10) CAG repeats, and the subjects with short (GGNS < or equal to 22; n = 9) and long (GGNL > or equal to 25; n = 10) GGN repeats. Body composition was assessed by DXA and serum levels of leptin, free testosterone and osteocalcin by ELISA. After 6.4 years of follow-up, DXA was repeated, and resting metabolic rate (RMR), MFO and VO2max determined by indirect calorimetry. RESULTS: CAGS and CAGL subjects had similar RMR and accumulated comparable amounts of fat tissue over 6.4 ± 1.0 years of follow-up. However, CAGL had higher MFO and total lean mass than CAGS (p < 0.05). Men with GGNS accumulated greater amount of total fat mass than men with GGNL, particularly in the trunk region seven years later. This concurred with a greater MFO in the GGNL group (p < 0.05), who accumulated less fat mass. Free testosterone was associated with MFO in absolute values (r = 0.45; p < 0.05) and MFO per kg of lower extremity lean mass per height squared (r = 0.35; p < 0.05). CONCLUSIONES: CAG and GGN repeat polymorphisms may influence muscle fat oxidation capacity and may have a role in the accumulation of fat over the years.


Subject(s)
Adiposity/genetics , Lipid Metabolism/genetics , Receptors, Androgen/genetics , Adolescent , Adult , Anaerobic Threshold/genetics , Cross-Sectional Studies , Healthy Volunteers , Humans , Longitudinal Studies , Male , Middle Aged , Oxidation-Reduction , Polymorphism, Genetic/genetics , Trinucleotide Repeats/genetics , White People , Young Adult
2.
Nutr. hosp ; 34(5): 1089-1098, sept.-oct. 2017. tab, graf
Article in English | IBECS | ID: ibc-167568

ABSTRACT

Introduction: Androgens play a major role in fat oxidation; however, the effects of androgens depend, among other factors, on the intrinsic characteristics of the androgen receptor (AR). Lower repetitions of CAG and GGN polymorphism appear to have a protective effect on fat accumulation in the transition from adolescent to mid-twenties. Whether a similar protective effect is present later in life remains unknown. The aims of this study were: a) to evaluate if extreme CAG and GGN repeat polymorphisms of the androgen receptors influence body fat mass, its regional distribution, resting metabolic rate (RMR), maximal fat oxidation capacity (MFO) and serum leptin, free testosterone and osteocalcin in healthy adult men; and b) to determine the longitudinal effects on fat tissue accumulation after 6.4 years of follow-up. Methods: CAG and GGN repeats length were measured in 319 healthy men (mean ± standard deviation [SD]: 28.3 ± 7.6 years). From these, we selected the subjects with extreme short (CAGS ≤ 19; n = 7) and long (CAGL ≥ 24; n = 10) CAG repeats, and the subjects with short (GGNS ≤ 22; n = 9) and long (GGNL ≥ 25; n = 10) GGN repeats. Body composition was assessed by DXA and serum levels of leptin, free testosterone and osteocalcin by ELISA. After 6.4 years of follow-up, DXA was repeated, and resting metabolic rate (RMR), MFO and VO2max determined by indirect calorimetry. Results: CAGS and CAGL subjects had similar RMR and accumulated comparable amounts of fat tissue over 6.4 ± 1.0 years of follow-up. However, CAGL had higher MFO and total lean mass than CAGS (p < 0.05). Men with GGNS accumulated greater amount of total fat mass than men with GGNL, particularly in the trunk region seven years later. This concurred with a greater MFO in the GGNL group (p < 0.05), who accumulated less fat mass. Free testosterone was associated with MFO in absolute values (r = 0.45; p < 0.05) and MFO per kg of lower extremity lean mass per height squared (r = 0.35; p < 0.05). Conclusions: CAG and GGN repeat polymorphisms may influence muscle fat oxidation capacity and may have a role in the accumulation of fat over the years (AU)


Introducción: los andrógenos juegan un papel importante en la oxidación de grasas; sin embargo, el efecto de los andrógenos depende, entre otros factores, de las características intrínsecas del receptor de andrógenos (RA). Un menor número de repeticiones CAG y GGN del RA parecen tener un efecto protector sobre la acumulación de grasa en la transición de la adolescencia hasta la veintena. Se desconoce si adelante en la vida persiste un efecto protector similar. Los objetivos de este estudio fueron: a) evaluar si repeticiones extremas de los polimorfismos CAG y GGN del RA influyen sobre la masa grasa corporal, su distribución regional, la tasa metabólica en reposo (RMR), la máxima oxidación de grasas (MFO) y la concentración sérica de leptina, testosterona libre y osteocalcina en hombres sanos; y b) determinar los efectos longitudinales sobre la acumulación de grasa después de 6.4 años de seguimiento. Métodos: la longitud de las repeticiones de CAG y GGN fueron medidas en 319 hombres sanos (media ± desviación estándar [SD]: 28,3 ± 7,6 años). De estos, seleccionamos los sujetos con repeticiones del CAG extremas cortas (CAGS ≤ 19; n = 7) y largas (CAGL ≥ 24; n = 10), y los sujetos con repeticiones del GGN extremas cortas (GGNS ≤ 22; n = 9) y largas (GGNL ≥ 25; n = 10). Se evaluaron la composición corporal mediante DXA y los niveles séricos de leptina, testosterona libre y osteocalcina por ELISA. Tras 6.4 años de seguimiento el DXA fue repetido, y la tasa metabólica en reposo (RMR), máxima oxidación de grasas (MFO) y VO2max fueron determinados mediante calorimetría indirecta. Resultados: los grupos CAGS y CAGL fueron comparables en RMR y cantidad de tejido graso tras 6,4 ± 1,0 años de seguimiento. Sin embargo, el grupo CAGL tuvo mayor MFO y masa libre de grasa que el grupo CAGS (p < 0,05). Los hombres con GGNS acumularon mayor cantidad de masa grasa total que los hombres con GGNL, particularmente en la región del tronco siete años después. Esto concordó con un mayor MFO en el grupo GGNL (p < 0,05), que acumuló menos masa grasa. La testosterona libre se asoció con el MFO en valores absolutos (r = 0,45; p < 0,05) y con MFO expresado por kg de masa libre de grasa de las piernas al cuadrado (r = 0,35; p < 0,05). Conclusiones: las repeticiones del polimorfismo del CAG y GGN pueden influenciar la capacidad muscular de oxidación de grasas y pueden tener un rol en la acumulación de grasa con los años (AU)


Subject(s)
Humans , Male , Adult , Middle Aged , Aged , Polymorphism, Genetic/physiology , Receptors, Androgen/administration & dosage , Osteocalcin/administration & dosage , Leptin/administration & dosage , Body Composition/physiology , Longitudinal Studies , Calorimetry, Indirect/methods , Helsinki Declaration , 28599
3.
Arch. med. deporte ; 24(119): 187-196, mayo-jun. 2007. ilus, tab
Article in Spanish | IBECS | ID: ibc-86464

ABSTRACT

Desde el descubrimiento de las células satélite 1961 han sido numerosos los estudios sobre el papel de estas células en la regeneración muscular y en la respuesta hipertrófica del músculo esquelético humano. El interés por estas células se ha visto incrementado recientemente ya que podrían convertirse en vehículo de técnicas de terapia celular. En este trabajo de revisión describimos especialmente las respuestas a diferentes estímulos de ejercicio en las que participan las células satélite. El contenido de núcleos de células satélite en los músculos esqueléticos humanos oscila entre un 1 y un 7% del total núcleos celulares observables en una preparación de músculo esquelético. El ejercicio regular parece asociarse a un aumento del contenido total de núcleos celulares y de núcleo de células satélite, mientras que con la edad disminuye su número. Así pues, es probable que la práctica regular de ejercicio físico sirva para contrarrestarlos cambios producidos en el “pool” de células satélite con la edad, provocando una mejora en el “pool” que puede ser sostenida en el tiempo. El uso de esteroides anabolizantes también está relacionado con un mejor contenido mío nuclear por sección transversal en culturistas. Sin embargo, no se sabe cuáles el tipo de ejercicio y qué duración e intensidad ofrece mejores resultados, en términos de aumento del número de células satélite. Menos se sabe aún de los factores que determinan la incorporación de núcleos de células satélite a fibras musculares ya existentes, fenómeno que es facilitado por actividad física regular. Tampoco se sabe si la combinación de mío trauma (lesión deportiva, por ejemplo) con ejercicio en la fase de recuperación puede redundar en una mayor y eficaz activación de las células satélite (AU)


Since the discovery of the satellite cells in 1961 a number of studies have examined the role that these cells play on muscle hypertrophy and regeneration, and on the hypertrophy responseto strength training in humans. The interest for these cells has raised in the last years due to the fact that they could be used as a vehicle in techniques of cellular therapy. The following review describes some of the elicited by physical activity on the satellite cells and how these satellite cells may contribute to muscle hypertrophy and regeneration. The content of nuclei pertaining to satellite cells among the overall nuclei content in a muscle histological preparation ranges between1 and 7%. Regular physical activity has been associated with both and enhancement of the total number of nuclei and increase of the content of satellite cells. In contrast, ageing is associated with a reduced proportion of nuclei pertaining to satellite cells. The latter, may be attenuated by regular participation on exercise, although there is no definitive scientific evidence for this effect. Anabolic steroid abuse has been associated with increased content of satellite cells in bodybuilders. It remains unknown, however, what the kind, duration and intensity of exercise more appropriate to stimulate satellite cell activation, proliferation and differentiation. Less is even known about the mechanisms that govern the process of fusion and incorporation of satellite cells with pre-existing muscle fibers, although some experimental evidences suggest that this process is facilitated by regular physical activity. More studies are need to verify if the combination of my trauma (sport injury, for example) and exercise during the recovery phase after an injury results in a greater stimulation of the f the satellite cells and in a more efficient reparation (AU)


Subject(s)
Humans , Male , Female , Satellite Cells, Skeletal Muscle/classification , Satellite Cells, Skeletal Muscle/physiology , Exercise/physiology , Biomarkers/analysis , Biopsy/methods , Biopsy , Regeneration/physiology , Motor Activity/physiology , Muscle, Skeletal/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...