Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 61(32): 12610-12624, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35926979

ABSTRACT

Green catalysts with excellent performance in Cu-free Sonogashira coupling reactions can be prepared by the supramolecular decoration of graphene surfaces with Pd(II) complexes. Here we report the synthesis, characterization, and catalytic properties of new catalysts obtained by the surface decoration of multiwalled carbon nanotubes (MWCNTs), graphene (G), and graphene nanoplatelets (GNPTs) with Pd(II) complexes of tetraaza-macrocyclic ligands bearing one or two anchor functionalities. The decoration of these carbon surfaces takes place under environmentally friendly conditions (water, room temperature, aerobic) in two steps: (i) π-π stacking attachment of the ligand via electron-poor anchor group 6-amino-3,4-dihydro-3-methyl-5-nitroso-4-oxo-pyrimidine and (ii) Pd(II) coordination from PdCl42-. Ligands are more efficiently adsorbed on the flat surfaces of G and GNPTs than on the curved surfaces of MWCNTs. All catalysts work very efficiently under mild conditions (50 °C, aerobic, 7 h), giving a similar high yield (90% or greater) in the coupling of iodobenzene with phenylacetylene to form diphenylacetylene in one catalytic cycle, but catalysts based on G and GNPTs (especially on GNPTs) provide greater catalytic efficiency in reuse (four cycles). The study also revealed that the active centers of the ligand-Pd type decorating the support surfaces are much more efficient than the Pd(0) and PdCl42- centers sharing the same surfaces. All of the results allow a better understanding of the structural factors to be controlled in order to obtain an optimal efficiency from similar catalysts based on graphene supports.

2.
ACS Omega ; 5(30): 18849-18861, 2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32775887

ABSTRACT

Controlling graphene conductivity is crucial for its potential applications. With this focus, this paper shows the effect of the non-covalent bonding of a pyrimidine derivative (HIS) on the electronic properties of graphene (G). Several G-HIS hybrids are prepared through mild treatments keeping unaltered the structures of both G and HIS. The attachment of HIS to G occurs by π-π stacking of the HIS-aromatic residue with the G surface. This partially blocks the p z electrons of G, giving rise to the splitting of both the valence and conduction bands. Moreover, the width of the splitting is directly related to the HIS content. This fact allows the fine-tuning of the band gap of G-HIS hybrids. Furthermore, HIS keeps its metal-complexing ability in the G-HIS hybrids. Taking advantage of this, a G-HIS-Cu(0) composite was prepared by H2 plasma reduction of a precursor of the G-HIS-Cu(II) type. G-HIS-Cu(0) contains Cu(0) clusters stabilized on the G surface due to interactions with the COO- functions of HIS. In an analogous hybrid, G-HIS-Au(0), the Au(0) NPs are also stabilized by COO- functions. This material, consisting of the coupling of Au(0) NPs and G-HIS, photocatalyzed water reduction under visible light radiation producing 12.5 µmol·g-1·h-1of hydrogen.

3.
Molecules ; 24(15)2019 Jul 26.
Article in English | MEDLINE | ID: mdl-31357384

ABSTRACT

A new G-(H2L)-Pd heterogeneous catalyst has been prepared via a self-assembly process consisting in the spontaneous adsorption, in water at room temperature, of a macrocyclic H2L ligand on graphene (G) (G + H2L = G-(H2L)), followed by decoration of the macrocycle with Pd2+ ions (G-(H2L) + Pd2+ = G-(H2L)-Pd) under the same mild conditions. This supramolecular approach is a sustainable (green) procedure that preserves the special characteristics of graphene and furnishes an efficient catalyst for the Cu-free Sonogashira cross coupling reaction between iodobenzene and phenylacetylene. Indeed, G-(H2L)-Pd shows an excellent conversion (90%) of reactants into diphenylacetylene under mild conditions (50 °C, water, aerobic atmosphere, 14 h). The catalyst proved to be reusable for at least four cycles, although decreasing yields down to 50% were observed.


Subject(s)
Coordination Complexes/chemistry , Graphite/chemistry , Palladium/chemistry , Catalysis , Chemical Phenomena , Hydrogen-Ion Concentration , Ligands , Models, Molecular , Molecular Conformation , Molecular Structure , Solutions , Spectrum Analysis
4.
ACS Omega ; 2(7): 3868-3877, 2017 Jul 31.
Article in English | MEDLINE | ID: mdl-31457693

ABSTRACT

The binding properties of HL1, HL2, and HL3 ligands toward Cu(II) and Zn(II) ions, constituted by tetraaza-macrocyclic rings decorated with pyrimidine pendants, were investigated by means of potentiometric and UV spectrophotometric measurements in aqueous solution, with the objective of using the related HL-M(II) (HL = HL1-HL3; M = Cu, Zn) complexes for the preparation of hybrid MWCNT-HL-M(II) materials based on multiwalled carbon nanotubes (MWCNTs), through an environmentally friendly noncovalent procedure. As shown by the crystal structure of [Cu(HL1)](ClO4)2, metal coordination takes place in the macrocyclic ring, whereas the pyrimidine residue remains available for attachment onto the surface of the MWCNTs via π-π stacking interactions. On the basis of equilibrium data showing the formation of highly stable Cu(II) complexes, the MWCNT-HL1-Cu(II) material was prepared and characterized. This compound proved very stable toward lixiviation processes (release of HL1 and/or Cu(II)); thus, it was used for the preparation of its reduced MWCNT-HL1-Cu(0) derivatives. X-ray photoelectron spectroscopy and transmission electron microscopy images showed that MWCNT-HL1-Cu(0) contains Cu(0) nanoparticles, of very small (less than 5 nm) and regular size, uniformly distributed over the surface of the MWCNTs. Also, the MWCNT-HL1-Cu(0) material proved very resistant to detachment of its components. Accordingly, both MWCNT-HL1-Cu(II) and MWCNT-HL1-Cu(0) are promising candidates for applications in heterogeneous catalysis.

5.
Sci Technol Adv Mater ; 17(1): 541-553, 2016.
Article in English | MEDLINE | ID: mdl-27877902

ABSTRACT

Controlling the chemistry on the surface of new carbon materials is a key factor to widen the range of their applicability. In this paper we show a grafting methodology of polyalkylamines to the surface of carbon nanomaterials, in particular, carbon nanotubes and a carbon black. The aim of this work is to reach large degrees of covalent functionalization with hyperbranched polyethyleneimines (HBPEIs) and to efficiently preserve the strong chelating properties of the HBPEIs when they are fixed to the surface of these carbon materials. This functionalization opens new possibilities of using these carbon nanotubes-based hybrids. The results show that the HBPEIs are covalently attached to the carbon materials, forming hybrids. These hybrids emerge from the reaction of amine functions of the HBPEIs with carbonyls and carboxylic anhydrides of the carbon surface which become imine and imide bonds. Thus, due to the nature of these bonds, the pre-oxidized samples with relevant number of C=O groups showed an increase in the degree of functionalization with the HBPEIs. Furthermore, both the acid-base properties and the coordination capacity for metal ions of the hybrids are equivalent to that of the free HBPEIs in solution. This means that the chemical characteristics of the HBPEIs have been efficiently transferred to the hybrids. To reach this conclusion we have developed a novel procedure to assess the acid-base and the coordination properties of the hybrids (solids) by means of potentiometric titration. The good agreement of the values obtained for the hybrids and for the free HBPEIs in aqueous solution supports the reliability of the procedure. Moreover, the high capacity of the hybrids to capture Ni2+ by complexation opens new possibilities of using these hybrids to capture high-value metal ions such as Pd2+ and Pt2+.

6.
J Am Chem Soc ; 135(1): 102-5, 2013 Jan 09.
Article in English | MEDLINE | ID: mdl-23259839

ABSTRACT

Thermodynamic parameters (ΔG°, ΔH°, TΔS°), obtained by means of potentiometric and isothermal titration calorimetry (ITC) methods, for the binding equilibria involving anions of high negative charge, like SO(4)(2-), SeO(4)(2-), S(2)O(3)(2-) and Co(CN)(6)(3-), and nitroso-amino-pyrimidine receptors in water suggested that anion-π interactions furnish a stabilization of about -10 kJ/mol to the free energy of association. These anion-π interactions are almost athermic and favored by large entropic contributions which are likely due to the reduced hydrophobic pyrimidine surface exposed to water after anion aggregation, and the consequent reduced disruptive effect on the dynamic water structure. The crystal structure of the {H(4)L[Co(CN)(6)]}·2H(2)O complex showed strong anion-π interactions between Co(CN)(6)(3-) and the protonated H(4)L(3+) receptor. The CN···centroid distance (2.786(3) Å), occurring with a cyanide N atom located almost above the centroid of the pyrimidine ring, is the shortest distance till now reported for the interaction between CN(-) ions and heteroaromatic rings.


Subject(s)
Thermodynamics , Anions/chemistry , Calorimetry , Solutions , Water/chemistry
7.
Langmuir ; 23(11): 5995-6003, 2007 May 22.
Article in English | MEDLINE | ID: mdl-17465575

ABSTRACT

The adsorption of five Nalpha-substituted amino acids with a 5-nitroso-6-oxo pyrimidine as substituent on a commercial activated carbon (AC) has been studied in aqueous solution at several pH values. The adsorption processes of these organic compounds have been analyzed on the basis of the electrolytic behavior of the adsorbates. In all cases, the adsorption process is highly irreversible due to strong pi-pi interactions between the arene centers of the AC and the pyrimidine residue of the adsorbates. This interaction is consistent with XPS data and HOMO-LUMO theoretical calculations. The adsorption of these organic compounds provides a new route for the functionalization of the AC surface with carboxyl groups. In addition, the adsorption capacity of the AC/organic compound systems for Cu(II) ions in aqueous solution has been studied at different pH values. These systems show an increase of the adsorption capacity for Cu(II) compared to the AC, which is related to the AC functionalization with carboxyl groups due to the adsorbed organic compounds.

8.
Acta Crystallogr C ; 61(Pt 5): m224-7, 2005 May.
Article in English | MEDLINE | ID: mdl-15876704

ABSTRACT

In the title complex, [Ba(C10H12N5O6)2(H2O)6]n, the Ba atom is nine-coordinated by six water ligands and three carboxylate O atoms. The Ba2+ cations and the anionic glutamate ligands form coordination polymer chains, and these chains are linked by pairs of N-H...O hydrogen bonds and pairs of O-H...O hydrogen bonds to form a continuous three-dimensional framework of cations and anions, which is reinforced by hydrogen bonds involving the water molecules.

9.
Acta Crystallogr B ; 60(Pt 1): 46-64, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14734844

ABSTRACT

Nine hydrated complexes of Group 2 (alkaline earth) cations with organic ligands which are N-substituted amino acids containing the 6-amino-3,4-dihydro-3-methyl-5-nitroso-4-oxopyrimidin-2-yl group have been structurally characterized. The octahydrated calcium glycinate complex, where the six-coordinate Ca cation lies on an inversion centre in the space group P(-)1, forms a finite (zero-dimensional) complex. The hexahydrated barium glycinate complex contains eight-coordinate Ba and it is isostructural with the known Sr analogue, and its one-dimensional coordination polymer takes the form of a simple chain. The octahydrated calcium and strontium threonine complexes are isostructural, with eight-coordinate cations lying on twofold rotation axes in the space group C2: the one-dimensional coordination polymers take the form of a chain of spiro-fused rings and a similar chain of spiro-fused rings is found in the heptahydrated barium serine complex, although here the ten-coordinate cation lies in a general position. In the tetrahydrated strontium and barium glycylglycinate complexes, the eight-coordinate cations lie on twofold rotation axes in the space group C2/c, but in the Sr complex the coordination polymer is a chain of spiro-fused rings, while in the Ba complex the coordination polymer forms deeply puckered sheets. There are two types of Ca site in the hexahydrated calcium valine complex: one is eight coordinate and gives rise to a two-dimensional coordination polymer, while the other is seven coordinate forming a finite, zero-dimensional coordination complex. In the heptahydrated barium methionine complex, the coordination polymer is three dimensional. In all of the complexes, the coordination aggregates are further linked by an extensive series of hydrogen bonds.


Subject(s)
Amino Acids/chemistry , Cations, Divalent/chemistry , Nitroso Compounds/chemistry , Pyrimidinones/chemistry , Barium/chemistry , Calcium/chemistry , Crystallography, X-Ray , Glycine/analogs & derivatives , Glycine/chemistry , Glycylglycine/analogs & derivatives , Glycylglycine/chemistry , Hydrogen Bonding , Ligands , Methionine/analogs & derivatives , Methionine/chemistry , Molecular Conformation , Molecular Structure , Molecular Weight , Polymers/chemistry , Serine/analogs & derivatives , Serine/chemistry , Strontium/chemistry , Threonine/analogs & derivatives , Threonine/chemistry , Valine/analogs & derivatives , Valine/chemistry , Water/chemistry
10.
Acta Crystallogr C ; 59(Pt 7): m291-3, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12855853

ABSTRACT

The title compound, whose structure has been redetermined at 120 K, contains almost centrosymmetric trans-[Zn(C(5)H(5)N(4)O(3))(2)(H(2)O)(2)].2H(2)O units, together with two uncoordinated water molecules. An extensive series of O-H.O, O-H.N and N-H.O hydrogen bonds gives rise to a three-dimensional framework structure.

11.
Acta Crystallogr C ; 59(Pt 6): m255-8, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12794339

ABSTRACT

The title complex, catena-poly[[triaquabarium(II)]-di-mu-6-amino-3-methyl-5-nitrosopyrimidine-2,4(1H,3H)-dionato], [Ba(C(5)H(5)N(4)O(3))(2)(H(2)O)(3)](n), forms a coordination polymer chain in which the two distinct anions use different ligating atoms to bridge pairs of cations. Adjacent pairs of cations are also linked by pairs of bridging water molecules. The chains are linked into a single three-dimensional framework by an extensive series of hydrogen bonds.

SELECTION OF CITATIONS
SEARCH DETAIL
...