Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Sci Rep ; 8(1): 16303, 2018 Nov 02.
Article in English | MEDLINE | ID: mdl-30389992

ABSTRACT

Excitations in magnetic structures of the so-called spin-ice materials generate two different peaks in the specific heat and anomalies in entropy in the temperature interval between 0 and 1 K. These points are due to the existence of two low-energy excited global states which seem to transit from a bosonic condensate towards a magnetic neutral plasma in a narrow temperature interval between 0.05 ≤ T ≤ 1 K. In this paper, we determine the characteristic features of two states and we analyze the possibilities of existence of a BEC state and its phase transition to the magnetic plasma state from a model of two magnetic charge fluids. From the structural analysis of the many-body excitation states, we obtain theoretical results about entropy and specific heat since these two key physical magnitudes announce the phase transitions. We give criteria for distinguishing if some of these phase transitions is of either first or second order.

2.
J Phys Condens Matter ; 29(15): 155803, 2017 Apr 20.
Article in English | MEDLINE | ID: mdl-28288002

ABSTRACT

Low energy excitation states in magnetic structures of the so-called spin-ices are produced via spin flips among contiguous tetrahedra of their crystal structure. These spin flips generate entities which mimic magnetic dipoles in every two tetrahedra according to the dumbbell model. When the temperature increases, the spin-flip processes are transmitted in the lattice, generating so-called Dirac strings, which constitute structural entities that can present mimetic behavior similar to that of magnetic monopoles. In recent studies of both specific heat and ac magnetic susceptibility, two (even possibly three) phases have been shown to vary the temperature. The first of these phases presents a sharp peak in the specific heat and another phase transition occurs for increasing temperature whose peak is broader than that of the former phase. The sharp peak occurs when there are no free individual magnetic charges and temperature of the second phase transition coincides with the maximum proliferation of free deconfined magnetic charges. In the present paper, we propose a model for analyzing the low energy excitation many-body states of these spin-ice systems. We give analytical formulas for the internal energy, specific heat, entropy and their temperature evolution. We study the description of the possible global states via the nature and structure of their one-body components by means of the thermodynamic functions. Below 0.37 K, the Coulomb-like magnetic charge interaction can generate a phase transition to a condensation of pole-antipole pairs, possibly having Bose-Einstein structure which is responsible for the sharp peak of the first phase transition. When there are sufficient free positive and negative charges, the system tends to behave as a magnetic plasma, which implies the broader peak in the specific heat appearing at higher temperature than the sharper experimental peak.

3.
Opt Express ; 19(4): 3742-57, 2011 Feb 14.
Article in English | MEDLINE | ID: mdl-21369199

ABSTRACT

Recent experiments have found entities in crystals whose behavior is equivalent to magnetic monopoles. In this paper, we explain some optical properties based on the reformulated "Maxwell" equations in material media in which there are equivalent magnetic charges. We calculate the coefficients of reflection and transmission of an electromagnetic wave in a plane interface between the vacuum and a medium with magnetic charges. These results can give a more extended vision of the properties of the materials with magnetic monopoles, since the phase and the amplitudes of the reflected and transmitted waves, differ with and without these magnetic entities.

8.
9.
Phys Rev B Condens Matter ; 41(13): 8672-8678, 1990 May 01.
Article in English | MEDLINE | ID: mdl-9993204
SELECTION OF CITATIONS
SEARCH DETAIL
...