Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Chaos ; 32(10): 103109, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36319277

ABSTRACT

We presented a methodology to approximate the entropy production for Brownian motion in a tilted periodic potential. The approximation stems from the well known thermodynamic uncertainty relation. By applying a virial-like expansion, we provided a tighter lower limit solely in terms of the drift velocity and diffusion. The approach presented is systematically analyzed in the tight-binding regime. We also provide a relative simple rule to validate using the tight-binding approach based on drift and diffusion relations rather than energy barriers and forces. We also discuss the implications of our results outside the tight-binding regime.


Subject(s)
Uncertainty , Diffusion , Thermodynamics , Motion , Entropy
2.
Biophys Chem ; 288: 106853, 2022 09.
Article in English | MEDLINE | ID: mdl-35753181

ABSTRACT

We study the steady-state rate of entropy generation for multiple interacting particles. The description used is based on the partially asymmetric exclusion process in a lattice with periodic boundary conditions. Our methodology shows that in the steady-state, the rate of entropy generation is directly proportional to the bulk drift and the applied driving force. Since in many cases the driving force is unknown or hard to determine. We circumvent this by deriving a lower bound for the entropy, resulting in an extended thermodynamic uncertainty relation for the asymmetric simple exclusion process. We systematically compared this bound with the actual entropy generation. Thus, we identify the force regimes, and particles' density conditions where the entropy bound derived from this extended thermodynamic uncertainty relation is meaningful.


Subject(s)
Cytoskeleton , Entropy , Thermodynamics
3.
Phys Rev E ; 102(4-1): 042405, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33212597

ABSTRACT

We consider enhanced diffusion for Brownian motion on a tilted periodic potential. Expressing the effective diffusion in terms of the eigenvalue band structure, we establish a connection between band gaps in the eigenspectrum and enhanced diffusion. We explain this connection for a simple cosine potential with a linear force and then generalize to more complicated potentials including one-dimensional potentials with multiple frequency components and nonseparable multidimensional potentials. We find that potentials with multiple band gaps in the eigenspectrum can lead to multiple maxima or broadening of the force-diffusion curve. These features are likely to be observable in experiments.

4.
Phys Rev E ; 101(6-1): 062123, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32688509

ABSTRACT

The thermodynamic uncertainty relation (TUR) is a universal constraint for nonequilibrium steady states that requires the entropy production rate to be greater than the relative magnitude of current fluctuations. It has potentially important implications for the thermodynamic efficiency of molecular-scale energy conversion in both biological and artificial systems. An alternative multidimensional thermodynamic uncertainty relation (MTUR) has also been proposed. In this paper we apply the TUR and the MTUR to a description of molecular-scale energy conversion that explicitly contains the degrees of freedom exchanging energy via a time-independent multidimensional periodic potential. The TUR and the MTUR are found to be universal lower bounds on the entropy generation rate and provide upper bounds on the thermodynamic efficiency. The TUR is found to provide only a weak bound while the MTUR provides a much tighter constraint by taking into account correlations between degrees of freedom. The MTUR is found to provide a tight bound in the near or far from equilibrium regimes but not in the intermediate force regime. Collectively, these results demonstrate that the MTUR is more appropriate than the TUR for energy conversion processes, but that both diverge from the actual entropy generation in certain regimes.

5.
Phys Rev E ; 100(1-1): 012404, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31499933

ABSTRACT

Diffusion on a free-energy landscape is a fundamental framework for describing molecular motors. In the landscape framework, energy conversion between different forms of energy, e.g., chemical and mechanical, is explicitly described using multidimensional nonseparable potential landscapes. We present a k-space method for reconstructing multidimensional free-energy landscapes from stochastic single-molecule trajectories. For a variety of two-dimensional model potential landscapes, we demonstrate the robustness of the method by reconstructing the landscapes using full dynamic information, i.e., simulated two-dimensional stochastic trajectories. We then consider the case where the stochastic trajectory is known only along one dimension. With this partial dynamic information, the reconstruction of the full two-dimensional landscape is severely limited in the majority of cases. However, we reconstruct effective one-dimensional landscapes for the two-dimensional model potentials. We discuss the interpretation of the one-dimensional landscapes and identify signatures of energy conversion. Finally, we consider the implications of these results for biological molecular motors experiments.

6.
J Theor Biol ; 462: 321-328, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30465778

ABSTRACT

Stochastic trajectories measured in single-molecule experiments have provided key insights into the microscopic behaviour of cyclic motor proteins. However, the fundamental free-energy landscapes of motor proteins are currently only able to be determined by computationally intensive numerical methods that do not take advantage of available single-trajectory data. In this paper we present a robust method for analysing single-molecule trajectories of cyclic motor proteins to reconstruct their free-energy landscapes. We use simulated trajectories on model potential landscapes to show the reliable reconstruction of the potentials. We determine the accuracy of the reconstruction method for common precision limitations and show that the method converges logarithmically. These results are then used to determine the experimental precision required to reconstruct a potential with a desired accuracy. The key advantages of the method are that it is simple to implement, is free of numerical difficulties that plague existing methods and is easily generalizable to higher dimensions.


Subject(s)
Models, Theoretical , Molecular Motor Proteins/physiology , Algorithms , Computer Simulation , Motion , Stochastic Processes , Thermodynamics
7.
Phys Rev E ; 97(3-1): 032419, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29776077

ABSTRACT

We present a method for reconstructing the free-energy landscape of overdamped Brownian motion on a tilted periodic potential. Our approach exploits the periodicity of the system by using the k-space form of the Smoluchowski equation and we employ an iterative approach to determine the nonequilibrium tilt. We reconstruct landscapes for a number of example potentials to show the applicability of the method to both deep and shallow wells and near-to- and far-from-equilibrium regimes. The method converges logarithmically with the number of Fourier terms in the potential.

8.
Article in English | MEDLINE | ID: mdl-26172743

ABSTRACT

Irreversible thermodynamics of single-molecule experiments subject to external constraining forces of a mechanical nature is presented. Extending Onsager's formalism to the nonlinear case of systems under nonequilibrium external constraints, we are able to calculate the entropy production and the general nonlinear kinetic equations for the variables involved. In particular, we analyze the case of RNA stretching protocols obtaining critical oscillations between different configurational states when forced by external means to remain in the unstable region of its free-energy landscape, as observed in experiments. We also calculate the entropy produced during these hopping events and show how resonant phenomena in stretching experiments of single RNA macromolecules may arise. We also calculate the hopping rates using Kramer's approach obtaining a good comparison with experiments.


Subject(s)
Entropy , Mechanical Phenomena , Nonlinear Dynamics , RNA/chemistry , RNA/metabolism , Biomechanical Phenomena , Kinetics , Stochastic Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...