Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 336: 127730, 2021 Jan 30.
Article in English | MEDLINE | ID: mdl-32768900

ABSTRACT

Phenols are responsible for the only health claim of virgin olive oil (VOO) recognized by the European Commission EU 432/2012 and the European Food Safety Authority. In this research, we studied the decrease in the phenolic content of 160 extra VOOs (EVOOs) after 12 months storage in darkness at 20 °C. Phenolic concentration was decreased 42.0 ± 24.3% after this period and this reduction strongly depended on the initial phenolic profile. Hence, EVOOs with predominance in oleacein and oleocanthal experienced a larger decrease in phenolic content than oils enriched in other phenols. Complementarily, hydroxytyrosol and oleocanthalic acid increased significantly in aged EVOOs, which allowed their discrimination from recently produced EVOOs. These changes are explained by degradation of main secoiridoids during storage due to their antioxidant properties. Hydroxytyrosol and oleocanthalic acid can be considered markers of olive oil ageing, although they can also provide information about quality or stability.


Subject(s)
Food Storage/methods , Olive Oil/chemistry , Phenols/chemistry , Antioxidants/chemistry , Area Under Curve , Chromatography, High Pressure Liquid , Iridoids/analysis , Phenols/analysis , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/analysis , ROC Curve , Tandem Mass Spectrometry , Time Factors
2.
Talanta ; 220: 121415, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32928427

ABSTRACT

Sex steroids are involved in biological functions that encompass from the complete sexual development of individuals up to the deregulation of metabolic pathways leading to some pathologies. Steroids are present in blood at low concentration levels from pg mL-1 to ng mL-1. For this reason, a high sensitive and selective method based on gas chromatography-negative chemical ionization-tandem mass spectrometry (GC-NCI-MS/MS) is here proposed to quantify either androgens (androstenedione, dehydroepiandrosterone, dihydrotestosterone and testosterone), estrogens (estrone and estradiol) and a progestogen (progesterone) in human plasma. The sample preparation steps, protein precipitation and solid phase extraction, were optimized to ensure the sample matrix removal and to extract steroids with high efficiency. The NCI-MS/MS detection approach was compared with that based on electron impact to evaluate the incidence of the ionization source in the determination of steroids. The quantification limits for determination of these analytes were in a range from 10 pg mL-1 to 5 ng mL-1, with a high sensitivity for estrogens, typically found at low concentrations. The proposed method was tested for the determination of steroids in male blood samples, in which 6 out of 7 steroids were detected and quantified to report concentration values in agreement with those described in the literature.


Subject(s)
Androgens , Tandem Mass Spectrometry , Estrone , Gas Chromatography-Mass Spectrometry , Humans , Male , Testosterone
3.
Talanta ; 219: 121184, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32887102

ABSTRACT

Matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) is increasingly recognized for its potential in the discovery of novel biomarkers directly from tissue sections. However, there are no MALDI IMS studies as yet on the adipose tissue, a lipid-enriched tissue that plays a pivotal role in the development of obesity-associated disorders. Herein, we aimed at developing an optimized method for analyzing adipose tissue lipid composition under both physiological and pathological conditions by MALDI IMS. Our studies showed an exacerbated lipid delocalization from adipose tissue sections when conventional strategies were applied. However, our optimized method using conductive-tape sampling and 2,5-dihydroxybenzoic acid (DHB) as a matrix, preserved the anatomical organization and minimized lipid diffusion from sample sections. This method enabled the identification of a total of 625 down-regulated and 328 up-regulated m/z values in the adipose tissue from a rat model of extreme obesity as compared to lean animals. Combination of MALDI IMS and liquid chromatography (LC)-MS/MS data identified 44 differentially expressed lipid species between lean and obese animals, including phospholipids and sphingomyelins. Among the lipids identified, SM(d18:0_18:2), PE(P-16:0_20:0), and PC(O-16:0_16:1) showed a differential spatial distribution in the adipose tissue of lean vs. obese animals. In sum, our method provides a valuable new tool for research on adipose tissue that may pave the way for the identification of novel biomarkers of obesity and metabolic disease.


Subject(s)
Phospholipids , Tandem Mass Spectrometry , Adipose Tissue , Animals , Chromatography, Liquid , Rats , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
4.
Anal Bioanal Chem ; 412(2): 489-498, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31760450

ABSTRACT

Polar lipids, especially glycerophospholipids, constitute the main components of cell membranes and are precursors of signaling molecules in many cellular and physiological processes. For this reason, the development of methods with high capability for detection of polar lipids in biological samples is required. In this research, the objective was to develop a method for comprehensive qualitative/quantitative determination of polar lipids in plasma by a combination of acquisition methods with a triple quadrupole mass analyzer. The strategy was optimized in two steps: (a) a first step for detection of lipids by monitoring selective fragmentation patterns representative of each lipid family and (b) a second step for confirmation of lipid species by detection and identification of product ions associated with the conjugated fatty acids. The acquisition list was divided into two multiple reaction monitoring (MRM) methods to ensure the detection of all transitions with suited instrumental sensitivity according to chromatographic retention time and relative abundance in plasma. The combination of the two MRM methods allowed the detection of 398 polar lipids in plasma in 64 min. Precision, estimated as within-day variability, was below 6.8% for all determined lipid families, while between-day variability was below 24.0%. This strategy has been applied to a cohort formed by 384 individuals in order to obtain a qualitative and quantitative distribution of polar lipids in human plasma. The most concentrated lipid families in relative terms were lysophospholipids, plasmalogens, and phosphatydilcholines, with mean relative concentration of 58.0, 17.1, and 8.3%, respectively. Then, sphingomyelins and phosphatidylethanolamines reported a relative concentration of 2.0%, followed by phosphatidylserines, with 1.1%. Graphical abstract.


Subject(s)
Chromatography, Liquid/methods , Lipids/blood , Tandem Mass Spectrometry/methods , Humans
5.
Talanta ; 199: 303-309, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30952262

ABSTRACT

Pig feces is an interesting biological sample to be implemented in metabolomics experiments by virtue of the information that can be deduced from the interaction between host and microbiome. However, pig fecal samples have received scant attention, especially in untargeted metabolomic studies. In this research, an analytical strategy was planned to maximize the identification coverage of metabolites found in pig fecal samples. For this purpose, two complementary platforms such as LC-QTOF MS/MS and GC-TOF/MS were used. Concerning sample preparation six extractant solvents with different polarity grade were tested to evaluate the extraction performance and, in the particular case of GC-MS, two derivatization protocols were compared. A total number of 303 compounds by combination of all the extractants and analytical platforms were tentatively identified. The main identified families were amino acids, fatty acids and derivatives, carbohydrates and carboxylic acids. For GC-TOF/MS analysis, the recommended extractant is methanol, while methoxymation was required in the derivatization protocol since this step allows detecting the α-keto acids, which are direct markers of the microbiome status. Concerning LC-QTOF MS/MS analysis, a dual extraction approach with methanol (MeOH) or MeOH/water and ethyl acetate is proposed to enhance the detection of polar and non-polar metabolites.


Subject(s)
Amino Acids/analysis , Carboxylic Acids/analysis , Fatty Acids/analysis , Feces/chemistry , Amino Acids/metabolism , Animals , Carboxylic Acids/metabolism , Chromatography, Liquid , Fatty Acids/metabolism , Mass Spectrometry , Swine
6.
Talanta ; 193: 29-36, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30368294

ABSTRACT

The recent growing interest in primary fatty acid amides (PFAMs) is due to the broad range of physiological effects they exhibit as bioindicator of pathological states. These bioactive lipids are usually in biological samples at the nanomolar level, making their detection and identification a challenging task. A method for quantitative analysis of seven main PFAMs (lauramide, myristamide, linoleamide, palmitamide, oleamide, stearamide and behenamide) in four human biofluids -namely, urine, plasma, saliva and sweat- is here reported. Two sample preparation procedures were compared to test their efficiency in each biofluid: solid-phase extraction (SPE) and protein precipitation. The latter was the best for plasma and urine, while the analysis of saliva and sweat required an SPE step for subsequent suited determination of PFAMs. Detection of the seven metabolites was performed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring (MRM) mode. Quantitative analysis was supported on the use of stable isotopically labeled internal standards (SIL-ISs) in the calibration method, which required the synthesis of each IS from the precursor deuterated fatty acids. Detection limits for the target analytes were within 0.3-3 ng mL-1. The method was applied to a small cohort of male and female volunteers (n = 6) to estimate the relative concentration profiles in the different biofluids. The analytical features of the method supported its applicability in clinical studies aimed at elucidating the role of PFAMs metabolism.


Subject(s)
Amides/blood , Amides/urine , Fatty Acids/blood , Fatty Acids/urine , Amides/chemical synthesis , Amides/standards , Chromatography, Liquid/methods , Deuterium , Fatty Acids/chemical synthesis , Fatty Acids/standards , Female , Humans , Limit of Detection , Male , Reference Standards , Reproducibility of Results , Saliva/chemistry , Sweat/chemistry , Tandem Mass Spectrometry/methods
7.
Talanta ; 177: 86-93, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-29108587

ABSTRACT

The main limitations of lipidomics analysis are the chemical complexity of the lipids, the range of concentrations at which they exist, and the variety of samples usually analyzed. These limitations particularly affect the characterization of polar lipids owing to the interference of neutral lipids, essentially acylglycerides, which are at high concentration and suppress ionization of low concentrated lipids in mass spectrometry detection. The influence of sample preparation on lipidomics analysis of polar lipids in adipose tissue by LC-MS/MS was the aim of this research. Two common extractants used for lipids isolation, methanol:chloroform (MeOH:CHCl3) and methyl tert-butyl ether (MTBE), were qualitatively and quantitatively compared for the extraction of the main families of lipids. The obtained results showed that each family of lipids is influenced differently by the extractant used. However, as a general trend, the use of MTBE as extractant led to higher extraction efficiency for unsaturated fatty acids, glycerophospholipids and ceramides, while MeOH:CHCl3 favored the isolation of saturated fatty acids and plasmalogens. The implementation of a solid-phase extraction (SPE) step for selective isolation of glycerophospholipids prior to LC-MS/MS analysis was assayed to evaluate its influence on lipids detection coverage as compared to direct analysis. This step was critical to enhance the detection coverage of glycerophospholipids by removal of ionization suppression effects caused by acylglycerides.


Subject(s)
Adipose Tissue/metabolism , Analytic Sample Preparation Methods/methods , Lipid Metabolism , Lipids/chemistry , Lipids/isolation & purification , Metabolomics , Humans , Solid Phase Extraction
8.
Talanta ; 150: 681-9, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26838459

ABSTRACT

Major threats in metabolomics clinical research are biases in sampling and preparation of biological samples. Bias in sample collection is a frequently forgotten aspect responsible for uncontrolled errors in metabolomics analysis. There is a great diversity of blood collection tubes for sampling serum or plasma, which are widely used in metabolomics analysis. Most of the existing studies dealing with the influence of blood collection on metabolomics analysis have been restricted to comparison between plasma and serum. However, polymeric gel tubes, which are frequently proposed to accelerate the separation of serum and plasma, have not been studied. In the present research, samples of serum or plasma collected in polymeric gel tubes were compared with those taken in conventional tubes from a metabolomics perspective using an untargeted GC-TOF/MS approach. The main differences between serum and plasma collected in conventional tubes affected to critical pathways such as the citric acid cycle, metabolism of amino acids, fructose and mannose metabolism and that of glycerolipids, and pentose and glucuronate interconversion. On the other hand, the polymeric gel only promoted differences at the metabolite level in serum since no critical differences were observed between plasma collected with EDTA tubes and polymeric gel tubes. Thus, the main changes were attributable to serum collected in gel and affected to the metabolism of amino acids such as alanine, proline and threonine, the glycerolipids metabolism, and two primary metabolites such as aconitic acid and lactic acid. Therefore, these metabolite changes should be taken into account in planning an experimental protocol for metabolomics analysis.


Subject(s)
Metabolome , Metabolomics/methods , Plasma/metabolism , Polymers/chemistry , Serum/metabolism , Specimen Handling , Female , Gas Chromatography-Mass Spectrometry/methods , Humans , Male , Plasma/chemistry , Serum/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...