Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Geroscience ; 44(4): 2223-2241, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35527283

ABSTRACT

Cytochrome b5 reductase 3 (CYB5R3) overexpression activates respiratory metabolism and exerts prolongevity effects in transgenic mice, mimicking some of the salutary effects of calorie restriction. The aim of our study was to understand how CYB5R3 overexpression targets key pathways that modulate the rate of aging in skeletal muscle, a postmitotic tissue with a greater contribution to resting energy expenditure. Mitochondrial function, autophagy and mitophagy markers were evaluated in mouse hind limb skeletal muscles from young-adult (7 months old) and old (24 months old) males of wild-type and CYB5R3-overexpressing genotypes. Ultrastructure of subsarcolemmal and intermyofibrillar mitochondria was studied by electron microscopy in red gastrocnemius. CYB5R3, which was efficiently overexpressed and targeted to skeletal muscle mitochondria regardless of age, increased the abundance of complexes I, II, and IV in old mice and prevented the age-related decrease of complexes I, III, IV, and V and the mitofusin MFN-2. ATP was significantly decreased by aging, which was prevented by CYB5R3 overexpression. Coenzyme Q and the mitochondrial biogenesis markers TFAM and NRF-1 were also significantly diminished by aging, but CYB5R3 overexpression did not protect against these declines. Both aging and CYB5R3 overexpression upregulated SIRT3 and the mitochondrial fission markers FIS1 and DRP-1, although with different outcomes on mitochondrial ultrastructure: old wild-type mice exhibited mitochondrial fragmentation whereas CYB5R3 overexpression increased mitochondrial size in old transgenic mice concomitant with an improvement of autophagic recycling. Interventions aimed at stimulating CYB5R3 could represent a valuable strategy to counteract the deleterious effects of aging in skeletal muscle.


Subject(s)
Mitochondria, Muscle , Mitochondria , Male , Mice , Animals , Mice, Transgenic , Mitochondria, Muscle/metabolism , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Autophagy
2.
Geroscience ; 42(3): 977-994, 2020 06.
Article in English | MEDLINE | ID: mdl-32323139

ABSTRACT

Calorie restriction without malnutrition (CR) is considered as the most effective nongenetic nor pharmacological intervention that promotes healthy aging phenotypes and can extend lifespan in most model organisms. Lifelong CR leads to an increase of cytochrome b5 reductase-3 (CYB5R3) expression and activity. Overexpression of CYB5R3 confers some of the salutary effects of CR, although the mechanisms involved might be independent because key aspects of energy metabolism and lipid profiles of tissues go in opposite ways. It is thus important to study if some of the metabolic adaptations induced by CR are affected by CYB5R3 overexpression. CYB5R3 overexpression greatly preserved body and liver weight in mice under CR conditions. In liver, CR did not modify mitochondrial abundance, but lead to increased expression of mitofusin Mfn2 and TFAM, a transcription factor involved in mitochondrial biogenesis. These changes were prevented by CYB5R3 overexpression but resulted in a decreased expression of a different mitochondrial biogenesis-related transcription factor, Nrf1. In skeletal muscle, CR strongly increased mitochondrial mass, mitofusin Mfn1, and Nrf1. However, CYB5R3 mice on CR did not show increase in muscle mitochondrial mass, regardless of a clear increase in expression of TFAM and mitochondrial complexes in this tissue. Our results support that CYB5R3 overexpression significantly modifies the metabolic adaptations of mice to CR.


Subject(s)
Caloric Restriction , Longevity , Animals , Liver , Mice , Mice, Transgenic , Muscle, Skeletal
SELECTION OF CITATIONS
SEARCH DETAIL
...