Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 29(49): e202301517, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37204268

ABSTRACT

Sub-nanometer metal clusters have special physical and chemical properties, significantly different from those of nanoparticles. However, there is a major concern about their thermal stability and susceptibility to oxidation. In situ X-ray Absorption spectroscopy and Near Ambient Pressure X-ray Photoelectron spectroscopy results reveal that supported Cu5 clusters are resistant to irreversible oxidation at least up to 773 K, even in the presence of 0.15 mbar of oxygen. These experimental findings can be formally described by a theoretical model which combines dispersion-corrected DFT and first principles thermochemistry revealing that most of the adsorbed O2 molecules are transformed into superoxo and peroxo species by an interplay of collective charge transfer within the network of Cu atoms and large amplitude "breathing" motions. A chemical phase diagram for Cu oxidation states of the Cu5 -oxygen system is presented, clearly different from the already known bulk and nano-structured chemistry of Cu.

2.
J Med Chem ; 65(6): 4727-4751, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35245051

ABSTRACT

By replacing a phenolic ring of (E)-resveratrol with an 1,3,4-oxadiazol-2(3H)-one heterocycle, new resveratrol-based multitarget-directed ligands (MTDLs) were obtained. They were evaluated in several assays related to oxidative stress and inflammation (monoamine oxidases, nuclear erythroid 2-related factor, quinone reductase-2, and oxygen radical trapping) and then in experiments of increasing complexity (neurogenic properties and neuroprotection vs okadaic acid). 5-[(E)-2-(4-Methoxyphenyl)ethenyl]-3-(prop-2-yn-1-yl)-1,3,4-oxadiazol-2(3H)-one (4e) showed a well-balanced MTDL profile: cellular activation of the NRF2-ARE pathway (CD = 9.83 µM), selective inhibition of both hMAO-B and QR2 (IC50s = 8.05 and 0.57 µM), and the best ability to promote hippocampal neurogenesis. It showed a good drug-like profile (positive in vitro central nervous system permeability, good physiological solubility, no glutathione conjugation, and lack of PAINS or Lipinski alerts) and exerted neuroprotective and antioxidant actions in both acute and chronic Alzheimer models using hippocampal tissues. Thus, 4e is an interesting MTDL that could stimulate defensive and regenerative pathways and block early events in neurodegenerative cascades.


Subject(s)
Monoamine Oxidase , Neuroprotective Agents , Antioxidants/metabolism , Antioxidants/pharmacology , Ligands , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/pharmacology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Oxidative Stress , Resveratrol/pharmacology
3.
ACS Omega ; 6(24): 16165-16175, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34179662

ABSTRACT

Dispersion-corrected density functional theory (DFT-D3) is applied to model iron triade (Fe, Co, and Ni) surfaces upon exchange of surface atoms with atomic gold. One first goal is to analyze the contact problem at the triade surface-Au interface and to correlate our findings with recent observations on iron triade nanoparticles (with diameters of around 5 nm) passivated by a few layers of gold. For this purpose, we analyze: (1) the energies of substitution; (2) the restructuring of the iron triade surfaces upon the atomic exchange; (3) the density of the orbitals bearing the largest projection on d(Au) atomic orbitals and, particularly, their overlap with orbitals from neighboring atoms of the triade surfaces; (4) the modification of the electronic density of states; and (5) the redistribution of the electronic density upon intermixing of Au and triade atoms. Inspite of the similarities between Ni, Co, and Fe in the condensed phase, significant differences are found in the features characterizing the exchange process. In particular, we find a better integration of the Au atom on the substitutional site of the Ni(001) surface than on those of the Fe(001) and Co(001) surfaces. This is in agreement with the fact that the electronic density of states is almost indistinguishable before and after Ni-Au intermixing. This outcome is correlated with the experimental observation on the allowing transition of Ni-Au core-shell nanoparticles before reaching the melting temperature. Our second objective is to explore the Au-triade atom intermixing process in sub-nanometric clusters, finding that it is energetically more favored than at solid surfaces yet endothermic at 0 K. This feature is explained as the result of the structural fluxionality characterizing clusters at the sub-nanometer scale. Entropy contributions make mixed Au-Ni clusters more stable than the unmixed counterpart already at 650 K while unmixed Co clusters remain energetically more favored up to 1295 K and iron clusters are predicted to be stable against intermixing over the experimentally relevant range of temperatures (up to 1100 °C). Remarkably, the net charge donated from the three triade atoms to atomic gold upon intermixing is similar in triade sub-nanometeric clusters and at extended triade surfaces. Gold clusters are prone to host Fe, Co, and Ni atoms at the center of their structures and the exchange process is predicted to be exothermic at 0 K even for a small cluster made of 13 atoms. More generally, our work highlights the importance of the polarity of the chemical bond between unlike metal atoms in alloys.

4.
J Phys Chem C Nanomater Interfaces ; 123(37): 23064-23074, 2019 Sep 19.
Article in English | MEDLINE | ID: mdl-31598186

ABSTRACT

In this work, we explore the decomposition of CO2 on unsupported and TiO2-supported Cu5 clusters via computational modeling, using both finite cluster and periodic slab structures of the rutile TiO2(110) surface. While the energy needed for C=O bond breaking is already significantly reduced upon adsorption onto the unsupported metal catalyst (it drops from 7.8 to 1.3 eV), gas desorption before bond activation is still the inevitable outcome due to the remaining barrier height even at 0 K. However, when the Cu5 cluster itself is supported on TiO2, reactant and product adsorption is strongly enhanced, the barrier for bond breaking is further reduced, and a spontaneous decomposition of the molecule is predicted. This finding is linked to our previous work on charge-transfer processes in the Cu5-TiO2 system triggered by solar photons, since a combination of both phenomena at suitable temperatures would allow for a photoinduced activation of CO2 by sunlight.

5.
J Phys Chem C Nanomater Interfaces ; 123(44): 27064-27072, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-33101568

ABSTRACT

An ab initio study of the interaction of O2, the most abundant radical and oxidant species in the atmosphere, with a Cu5 cluster, a new generation atomic metal catalyst, is presented. The open-shell nature of the reactant species is properly accounted for by using the multireference perturbation theory, allowing the experimentally confirmed resistivity of Cu5 clusters toward oxidation to be investigated. Approximate reaction pathways for the transition from physisorption to chemisorption are calculated for the interaction of O2 with quasi-iso-energetic trapezoidal planar and trigonal bipyramidal structures. Within the multireference approach, the transition barrier for O2 activation can be interpreted as an avoided crossing between adiabatic states (neutral and ionic), which provides new insights into the charge-transfer process and gives better estimates for this hard to localize and therefore often neglected first intermediate state. For Cu5 arranged in a bipyramidal structure, the O-O bond cleavage is confirmed as the rate-determining step. However, for planar Cu5, the high energy barrier for O2 activation, related to a very pronounced avoided crossing when going from physisorption to chemisorption, determines the reactivity in this case.

SELECTION OF CITATIONS
SEARCH DETAIL
...