Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Bot ; 103(8): 1436-48, 2016 08.
Article in English | MEDLINE | ID: mdl-27539260

ABSTRACT

PREMISE OF THE STUDY: Plant-herbivore networks are highly specialized in their interactions, yet they are highly variable with regard to the relative importance of specific host species for herbivores. How host species traits determine specialization and species strength in this antagonistic network is still an unanswered question that we addressed in this study. METHODS: We assessed plant cover and antiherbivore resistance traits to assess the extent to which they accounted for the variation in specialization and strength of interactions among species in a plant-herbivore network. We studied a tropical antagonistic network including a diverse herbivore-host plant assemblages in different habitat types and climatic seasons, including host plants with different life histories. KEY RESULTS: Particular combinations of leaf toughness, trichome density, and phenolic compounds influenced herbivore specialization and host species strength, but with a significant spatiotemporal variation among plant life histories. Conversely, plant-herbivore network parameters were not influenced by plant cover. CONCLUSIONS: Our study highlights the importance of species-specific resistance traits of plants to understand the ecological and evolutionary consequences of plant-herbivore interaction networks. The novelty of our research lies in the use of a trait-based approach to understand the variation observed in diverse plant-herbivore networks.


Subject(s)
Ecosystem , Herbivory , Plant Leaves/physiology , Antibiosis , Biological Evolution , Food Chain , Forests , Mexico , Population Density , Seasons
2.
PLoS One ; 9(10): e110430, 2014.
Article in English | MEDLINE | ID: mdl-25340790

ABSTRACT

Despite the dynamic nature of ecological interactions, most studies on species networks offer static representations of their structure, constraining our understanding of the ecological mechanisms involved in their spatio-temporal stability. This is the first study to evaluate plant-herbivore interaction networks on a small spatio-temporal scale. Specifically, we simultaneously assessed the effect of host plant availability, habitat complexity and seasonality on the structure of plant-herbivore networks in a coastal tropical ecosystem. Our results revealed that changes in the host plant community resulting from seasonality and habitat structure are reflected not only in the herbivore community, but also in the emergent properties (network parameters) of the plant-herbivore interaction network such as connectance, selectiveness and modularity. Habitat conditions and periods that are most stressful favored the presence of less selective and susceptible herbivore species, resulting in increased connectance within networks. In contrast, the high degree of selectivennes (i.e. interaction specialization) and modularity of the networks under less stressful conditions was promoted by the diversification in resource use by herbivores. By analyzing networks at a small spatio-temporal scale we identified the ecological factors structuring this network such as habitat complexity and seasonality. Our research offers new evidence on the role of abiotic and biotic factors in the variation of the properties of species interaction networks.


Subject(s)
Ecosystem , Herbivory/physiology , Host-Parasite Interactions/physiology , Plants/parasitology , Analysis of Variance , Animals , Lepidoptera/physiology , Seasons , Species Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...