Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 13: 831737, 2022.
Article in English | MEDLINE | ID: mdl-35350617

ABSTRACT

The use of bifidobacteria as probiotics has proven to be beneficial in gastroenteric infections. Furthermore, prebiotics such as inulin can enhance the survival and growth of these bacteria. Two trials were performed to evaluate the effects of the administration of Bifidobacterium longum subsp. infantis CECT 7210 and oligofructose-enriched inulin against Salmonella enterica serovar Typhimurium or enterotoxigenic Escherichia coli (ETEC) F4. A total of 72 (Salmonella trial) and 96 (ETEC F4 trial) weaned piglets were used in a 2 × 2 design (with or without synbiotic, inoculated or not with the pathogen). After adaptation, animals were orally inoculated. Performance and clinical signs were evaluated. On days 4 and 8 (Salmonella trial) and 3 and 7 (ETEC F4 trial) post-inoculation (PI), one animal per pen was euthanized. Blood, digestive content and tissue samples were collected and microbiological counts, fermentation products, serum inflammatory markers and ileum histomorphometry analysis were performed. Both challenges had an impact on faecal consistency (p < 0.001), including the faecal shedding of Salmonella and increased numbers of enterobacteria and coliforms. The synbiotic administration did not have any effect on pathogen loads but induced changes in the fermentation profile, such as increased valeric acid in both trials as well as decreased acetic acid, except for Salmonella-challenged animals. The effect on propionate varied among trials, increasing in challenged synbiotic-treated pigs and decreasing in non-challenged ones in the Salmonella trial (P interaction = 0.013), while the opposed occurred in the ETEC F4 trial (P interaction = 0.013). The administration of the synbiotic increased intraepithelial lymphocytes (IEL; p = 0.039) on day 8 PI in the Salmonella trial and a similar trend occurred in non-challenged pigs in the ETEC F4 trial (P interaction = 0.086). The results did not provide evidence of reduced pathogen load with the synbiotic, although a modulation in fermentative activity could be identified depending on the challenge. Consistent increases were found in IEL, suggesting that this synbiotic combination has some immunomodulatory properties.

2.
Front Microbiol ; 12: 642549, 2021.
Article in English | MEDLINE | ID: mdl-33935999

ABSTRACT

We evaluated the potential of multi-strain probiotic (Bifidobacterium longum subsp. infantis CECT 7210 and Lactobacillus rhamnosus HN001) with or without galacto-oligosaccharides against enterotoxigenic Escherichia coli (ETEC) F4 infection in post-weaning pigs. Ninety-six piglets were distributed into 32 pens assigned to five treatments: one non-challenged (CTR+) and four challenged: control diet (CTR-), with probiotics (>3 × 1010 CFU/kg body weight each, PRO), prebiotic (5%, PRE), or their combination (SYN). After 1 week, animals were orally inoculated with ETEC F4. Feed intake, weight, and clinical signs were recorded. On days 4 and 8 post-inoculation (PI), one animal per pen was euthanized and samples from blood, digesta, and tissues collected. Microbiological counts, ETEC F4 real-time PCR (qPCR) quantification, fermentation products, serum biomarkers, ileal histomorphometry, and genotype for mucin 4 (MUC4) polymorphism were determined. Animals in the PRO group had similar enterobacteria and coliform numbers to the CTR+ group, and the ETEC F4 prevalence, the number of mitotic cells at day 4 PI, and villus height at day 8 PI were between that observed in the CTR+ and CTR- groups. The PRO group exhibited reduced pig major acute-phase protein (Pig-MAP) levels on day 4 PI. The PRE diet group presented similar reductions in ETEC F4 and Pig-MAP, but there was no effect on microbial groups. The SYN group showed reduced fecal enterobacteria and coliform counts after the adaptation week but, after the inoculation, the SYN group showed lower performance and more animals with high ETEC F4 counts at day 8 PI. SYN treatment modified the colonic fermentation differently depending on the MUC4 polymorphism. These results confirm the potential of the probiotic strains and the prebiotic to fight ETEC F4, but do not show any synergy when administered together, at least in this animal model.

3.
Front Microbiol ; 11: 2012, 2020.
Article in English | MEDLINE | ID: mdl-32973728

ABSTRACT

Salmonella is a common causative agent of enteric disease and is developing mechanisms of resistance to antimicrobials. Probiotics, such as bifidobacteria and lactobacilli, and prebiotic fibers are a potential alternative to counteract this pathogen as they have demonstrated effectiveness in preventing its adhesion, reducing intestinal damage, and enhancing the host immune system. Furthermore, the benefits are expected to be potentiated when these compounds are administered together. A trial was performed to evaluate the efficacy of two probiotic strains (Bifidobacterium longum subsp. infantis CECT 7210 (Laboratorios Ordesa S.L.) and Lactobacillus rhamnosus HN001, combined or not with a prebiotic containing oligofructose-enriched inulin, against Salmonella Typhimurium. Ninety-six piglets (28 days old) were distributed into 32 pens assigned to 5 treatments: one non-challenged (control diet, CTR+) and four challenged: control diet (CTR-) or supplemented with probiotics (>3 × 1010 cfu/kg each strain, PRO), prebiotic (5%, PRE), or their combination (SYN). After 1 week of adaptation, animals were orally challenged with Salmonella Typhimurium. Feed intake, weight, and clinical signs were recorded. On days 4 and 8 post-inoculation (PI), one animal per pen was euthanized, and samples from blood, digestive content, and ileal tissues were collected to determine Salmonella counts, fermentation products, ileal histomorphology, and serum TNF-α and Pig-MAP concentrations. The effect of the oral challenge was evidenced by animal performance, fecal consistency, and intestinal architecture. Regarding the experimental treatments, animals belonging to the PRO group experienced a faster clearance of the pathogen, with more pigs being negative to its excretion at the end of the study and recovering the impaired ileal villi/crypt ratio more rapidly. Animals receiving the PRE diet showed a lower intestinal colonization by Salmonella, with no countable levels (<3 cfu/g) in any of the analyzed samples, and an augmented immune response suggested by serum Pig-MAP concentrations. Treatments including the prebiotic (PRE and SYN) showed similar changes in the fermentation pattern, with an increase in the molar percentage of valeric acid concentration in the colon. The SYN group, however, did not show any of the outcomes registered for PRO and PRE in Salmonella colonization or in immunity markers, suggesting the lack of synbiotic action in this animal model. Further research is needed to better understand the complex mechanisms behind these effects.

4.
Poult Sci ; 99(1): 235-245, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32416807

ABSTRACT

This study was conducted to assess the effect of dietary supplementation of Muramidase 007 to broiler chickens on gastrointestinal functionality, evaluating growth performance, apparent ileal digestibility, intestinal histomorphology, vitamin A in plasma and cecal microbiota. A total of 480 one-day male chicks (Ross 308) were distributed in 16 pens allocated in 2 experimental diets: the control diet (CTR) without feed enzymes, coccidiostat or growth promoters, and the experimental diet (MUR): CTR supplemented with 35,000 units (LSU(F))/kg of the Muramidase 007. Digesta and tissue samples were obtained on days 9 and 36 of the study. A lower feed conversion ratio was observed in the MUR treatment. Apparent ileal digestibility of DM, organic matter and energy were improved by Muramidase 007. It was also observed that MUR improved digestibility of total fatty acids, mono-unsaturated fatty acids and poly-unsaturated fatty acids, and content of vitamin A in plasma at day 9 (P < 0.05). Histomorphological analysis of jejunum samples revealed no differences in the villus height or crypt depth; but a higher number of goblet cells and intraepithelial lymphocytes at day 36 with MUR. No differences were observed in plate counts of enterobacteria or Lactobacillus along the gastrointestinal tract, neither on the cecal short-chain fatty acids. An statistical trend was observed for reduction of cecal clostridia at day 9 for MUR. Analysis of cecal microbiota structure by 16S rRNA gene sequencing revealed relevant changes correlated to age. At day 9, broilers receiving MUR showed decreased alpha diversity compared to CTR that was not detected at day 36. Changes in specific taxonomic groups with an increase in Lactobacillus genus were identified. In conclusion, evaluation of the variables in this study indicates that dietary Muramidase 007 contributes to improve feed conversation ratio and gastrointestinal function in broiler chickens. Effects could have been mediated by slight shifts observed in the intestinal microbiota. More studies are guaranteed to fully understand the mechanisms involved.


Subject(s)
Chickens/physiology , Gastrointestinal Microbiome/drug effects , Muramidase/pharmacology , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Chickens/growth & development , Chickens/microbiology , Diet/veterinary , Digestion/drug effects , Fatty Acids/metabolism , Male , RNA, Ribosomal, 16S
5.
Animals (Basel) ; 10(2)2020 Feb 03.
Article in English | MEDLINE | ID: mdl-32028658

ABSTRACT

This study aimed to assess the impact of two different feeding programs, including or not antimicrobials, on gut microbiota development at early ages in commercial pigs. For this, 21-day-old weaned piglets were distributed into 12 pens (6 replicates with 26 pigs each) and fed ad libitum until fattening with: standard commercial formula with antibiotics and zinc oxide (2400 ppm) (AB), and alternative unmedicated feed formula (UN). Subsequently, the animals were moved to the fattening unit (F) receiving a common diet. Pigs were weighed, and feed consumption and diarrhea scores registered. Feces were collected on days 9 (pre-starter), 40 (starter) and 72 (fattening) post-weaning and microbial DNA extracted for 16S rDNA sequencing. Piglets fed UN diets had a worse feed efficiency (p < 0.05) than AB during nursery; however, UN pigs spent less time scouring after weaning (p = 0.098). The structure of fecal community evolved with the age of the animals (p = 0.001), and diet also showed to have a role, particularly in the starter period when UN microbiomes clustered apart from AB, resembling the ecosystems found in the fattening animals. Fibrolytic genera (Fibrobacter, Butyrivibrio, Christellansellaceae) were enriched in UN piglets whereas Lactobacillus characterized AB piglets (adjusted p < 0.05). Overall, this alternative feeding program could anticipate the gut development of piglets despite a lower feed efficiency compared to standard medicalized programs.

6.
Arch Anim Nutr ; 74(4): 271-295, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32108496

ABSTRACT

Short and medium-chain fatty acids (SCFA and MCFA, respectively) are commonly used as feed additives in piglets to promote health and prevent post-weaning diarrhoea. Considering that the mechanism and site of action of these fatty acids can differ, a combined supplementation could result in a synergistic action. Considering this, it was aimed to assess the potential of two new in-feed additives based on butyrate or heptanoate, protected with sodium salts of MCFA from coconut distillates, against enterotoxigenic Escherichia coli (ETEC) F4+ using an experimental disease model. Two independent trials were performed in 48 early-weaned piglets fed a control diet (CTR) or a diet supplemented with MCFA-protected sodium butyrate (BUT+; Trial 1) or sodium heptanoate (HPT+; Trial 2). After 1 week of adaptation, piglets were challenged with a single oral inoculum of ETEC F4+ (minimum 1.4 · 109 cfu). One animal per pen was euthanised on days 4 and 8 post-inoculation (PI) and the following variables assessed: growth performance, clinical signs, gut fermentation, intestinal morphology, inflammatory mediators, pathogen excretion and colon microbiota. None of the additives recovered growth performance or reduced diarrhoea when compared to the respective negative controls. However, both elicited different responses against ETEC F4+. The BUT+ additive did not lead to reduce E. coli F4 colonisation but enterobacterial counts and goblet cell numbers in the ileum were increased on day 8 PI and this followed higher serum TNF-α concentrations on day 4 PI. The Firmicutes:Bacteroidetes ratio was nevertheless increased. Findings in the HPT+ treatment trial included fewer animals featuring E. coli F4 in the colon and reduced Enterobacteriaceae (determined by 16S RNA sequencing) on day 4 PI. In addition, while goblet cell numbers were lower on day 8 PI, total SCFA levels were reduced in the colon. Results indicate the efficacy of MCFA-protected heptanoate against ETEC F4+ and emphasise the potential trophic effect of MCFA-protected butyrate on the intestinal epithelium likely reinforcing the gut barrier.


Subject(s)
Butyric Acid/metabolism , Fatty Acids/metabolism , Gastrointestinal Microbiome/physiology , Gastrointestinal Tract/drug effects , Heptanoates/metabolism , Sus scrofa/physiology , Animal Feed/analysis , Animals , Butyric Acid/administration & dosage , Cocos/chemistry , Colon/drug effects , Colon/microbiology , Diet/veterinary , Dietary Supplements/analysis , Enterotoxigenic Escherichia coli/physiology , Escherichia coli Infections/immunology , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Fatty Acids/administration & dosage , Fermentation/drug effects , Gastrointestinal Tract/anatomy & histology , Gastrointestinal Tract/immunology , Gastrointestinal Tract/metabolism , Heptanoates/administration & dosage , Male , Sus scrofa/growth & development , Sus scrofa/microbiology , Swine , Swine Diseases/immunology , Swine Diseases/microbiology
7.
J Anim Sci Biotechnol ; 10: 89, 2019.
Article in English | MEDLINE | ID: mdl-31728192

ABSTRACT

BACKGROUND: The search for alternatives to antibiotics in pig production has increased the interest in natural resources with antimicrobial properties, such as medium-chain fatty acids (MCFA) as in-feed additives. This study evaluated the potential of a novel blend of MCFA salts (DIC) from distilled coconut oil with a lauric acid content to reduce enteropathogens and control intestinal diseases around weaning. Two experimental disease models were implemented in early-weaned piglets, consisting of two oral challenges: Salmonella Typhimurium (1.2 × 108 CFU) or enterotoxigenic Escherichia coli (ETEC) F4 (1.5 × 109 CFU). The parameters assessed were: animal performance, clinical signs, pathogen excretion, intestinal fermentation, immune-inflammatory response, and intestinal morphology. RESULTS: The Salmonella challenge promoted an acute course of diarrhea, with most of the parameters responding to the challenge, whereas the ETEC F4 challenge promoted a mild clinical course. A consistent antipathogenic effect of DIC was observed in both trials in the hindgut, with reductions in Salmonella spp. plate counts in the cecum (P = 0.03) on d 8 post-inoculation (PI) (Salmonella trial), and of enterobacteria and total coliform counts in the ileum and colon (P < 0.10) on d 8 PI (ETEC F4 trial). When analyzing the entire colonic microbiota (16S rRNA gene sequencing), this additive tended (P = 0.13) to reduce the Firmicutes/Bacteroidetes ratio and enriched Fibrobacteres after the Salmonella challenge. In the ETEC F4 challenge, DIC prompted structural changes in the ecosystem with increases in Dialister, and a trend (P = 0.14) to increase the Veillonellaceae family. Other parameters such as the intestinal fermentation products or serum pro-inflammatory mediators were not modified by DIC supplementation, nor were the histological parameters. Only the intraepithelial lymphocyte (IEL) counts were lowered by DIC in animals challenged with Salmonella (P = 0.07). With ETEC F4, the IEL counts were higher with DIC on d 8 PI (P = 0.08). CONCLUSIONS: This study confirms the potential activity of this MCFA salts mixture to reduce intestinal colonization by opportunistic pathogens such as Salmonella or E. coli and its ability to modulate colonic microbiota. These changes could explain to some extent the local immune cell response at the ileal level.

8.
Arch Anim Nutr ; 73(5): 339-359, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31342760

ABSTRACT

This study aimed to evaluate the potential of two new fat-protected butyrate or heptanoate salts to improve gut health and control post-weaning colibacillosis in weaning piglets challenged with enterotoxigenic Escherichia coli (ETEC) F4+, particularly focusing on their impact on intestinal microbiota and fermentative activity along the gastrointestinal tract (GIT). Seventy-two 21-d-old pigs were fed a plain diet (CTR) or supplemented with sodium butyrate (BUT) or sodium heptanoate (HPT), both at 0.3%. After a week of adaptation, animals were orally challenged at days 8 and 9 with 5.8 · 109 and 6.6 · 1010 cfu, respectively, and were euthanised on d 4 and d 8 post-inoculation (PI) (n = 8) to collect blood, digesta and tissue samples and characterise microbial groups, pathogen loads (qPCR), fermentation, ileal histomorphometry and immune markers. Colonic microbiota was analysed by 16S rRNA gene MiSeq sequencing. Supplementing both acid salts did not compensate clinical challenge effects nor performance impairments and neither histomorphometry nor serum biomarkers. Changes in the gastric fermentative activity were registered, BUT reducing lactic acid concentrations (day 8 PI), and with HPT fewer animals presenting detectable concentrations of propionic, butyric and valeric acids. At ileum BUT increased acetic acid concentration (day 8 PI), and both additives reduced short-chain fatty acids (SCFA) in the colon. Increases in enterobacteria and coliforms counts in ileal digesta (day 4 PI, p < 0.10) and mucosa scrapes (p < 0.05) were registered although E. coli F4 gene copies were unaffected. Regarding changes in the colonic microbiota (day 4 PI), Prevotellaceae and Prevotella were promoted with BUT supplementation whereas only minor groups were modified in HPT-treated animals. Summarising, although the pathogen loads or inflammatory mediators remained unresponsive, butyrate and heptanoate showed a significant impact on microbial fermentation along the whole GIT, being able to modify different bacterial groups at the colon. It could be hypothesised that these effects might be mediated by a carry-over effect of the changes observed in gastric fermentation, but possibly also to a better nutrient digestion in the foregut as a result of the reduced colonic SCFA concentrations.


Subject(s)
Butyric Acid/metabolism , Escherichia coli Infections/veterinary , Gastrointestinal Microbiome/drug effects , Heptanoates/metabolism , Intestine, Large/drug effects , Swine Diseases/prevention & control , Animal Feed/analysis , Animals , Butyric Acid/administration & dosage , Colon/drug effects , Colon/microbiology , Diet/veterinary , Dietary Supplements/analysis , Enterotoxigenic Escherichia coli/physiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/prevention & control , Fermentation/drug effects , Gastrointestinal Microbiome/physiology , Heptanoates/administration & dosage , Intestine, Large/metabolism , Intestine, Large/microbiology , Male , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis , Sodium/administration & dosage , Sodium/metabolism , Sus scrofa/metabolism , Sus scrofa/microbiology , Swine , Swine Diseases/microbiology , Weaning
9.
Res Vet Sci ; 124: 426-432, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31082572

ABSTRACT

Having sensitive serum biomarkers able to determine the structural changes of the small intestine suffering from bacterial digestive diseases could be a valuable tool particularly in piglets at weaning, when intestinal infections are highly prevalent. We evaluated the usefulness of three inflammatory and gut-wall-integrity biomarkers to assess the degree of intestinal histo-morphological damage in piglets. Piglets were orally challenged with Salmonella Typhimurium or enterotoxigenic Escherichia coli (ETEC) to get a variable range of response according to individual variability. Forty-eight piglets were challenged with Salmonella Typhimurium and seventy-two with enterotoxigenic Escherichia coli K88. Clinical signs and faecal score were recorded. At Days 4 and 8 post-inoculation, blood was sampled, animals euthanised and distal ileum dissected. Morphological measures were obtained from the gut tissue, and serum tumour necrosis factor-alpha (TNF-α), pig major acute-phase protein (Pig-MAP) and intestinal fatty acid-binding protein (I-FABP) were determined. Animals developed mild-to-severe diarrhoea after the challenge. When analysing the complete set of analytical results, a high correlation was found among the three serum biomarkers. The most representative morphological indicator was the villus:crypt ratio (V:C), which showed a strong negative correlation with all three biomarkers. Regression analyses between faecal score and the previous variable showed linear relations. When the range of V:C was analysed, based on the quartile distribution of each serum variable, a marked increase in their concentration was observed with greater villus damage. Summarising, the combination of I-FABP, Pig-MAP and TNF-α may be useful for determining the intestinal injury degree and barrier integrity in recently weaned pigs.


Subject(s)
Acute-Phase Proteins/metabolism , Escherichia coli Infections/veterinary , Fatty Acid-Binding Proteins/metabolism , Salmonella Infections, Animal/physiopathology , Swine Diseases/physiopathology , Tumor Necrosis Factor-alpha/metabolism , Animals , Biomarkers/metabolism , Diarrhea/microbiology , Diarrhea/physiopathology , Disease Models, Animal , Enterotoxigenic Escherichia coli/physiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/physiopathology , Intestines/microbiology , Male , Salmonella Infections, Animal/microbiology , Salmonella typhimurium/physiology , Sus scrofa , Swine , Swine Diseases/microbiology , Weaning
10.
Food Funct ; 9(7): 3884-3894, 2018 Jul 17.
Article in English | MEDLINE | ID: mdl-29961784

ABSTRACT

This study aims to explore the biological functions of the isolated exopolysaccharides (EPSs) produced during the industrial fermentation of olives against enterotoxigenic E. coli (ETEC) K88. Exopolysaccharides were isolated from five industrial fermenters. Analysis of their monosaccharide composition by GLC revealed that the main components were glucose (27%-50%) and galactose (23%-33%) followed by rhamnose (4-23%) and arabinose (6-17%). The 1H NMR spectrum showed a very similar profile between samples, and a more in-depth analysis revealed the presence of an α-pyranose in the form of α-d-Glcp-(1→) and two different α-furanoses, with chemicals shift values, suggesting the presence of α-d-Glcf and α-d-Galf. Miniaturized in vitro tests demonstrated the ability of EPS samples to attach specifically to ETEC K88 (P < 0.05) with variable intensities. The competition test did not show the ability to block the ETEC K88 adhesion to IPEC-J2 cells; however, in the displacement test, all EPS samples were shown to effectively remove the pathogens attached to the cells (P < 0.01). These results suggest that the EPSs produced during the fermentation of table green olives could interfere with the attachment of opportunistic pathogens onto the intestinal epithelial cells. This would open the possibility of novel functional properties for this traditional Mediterranean fermented food and for the isolated EPSs as candidates for nutraceutics to be used in human and/or animal diets in the prevention and treatment of ETEC diarrhoea.


Subject(s)
Bacterial Adhesion/drug effects , Epithelial Cells/microbiology , Intestines/microbiology , Olea/chemistry , Plant Extracts/pharmacology , Polysaccharides/pharmacology , Salts/pharmacology , Cell Line , Enterotoxigenic Escherichia coli , Humans , Plant Extracts/chemistry , Polysaccharides/chemistry , Salts/chemistry , Waste Products/analysis
11.
Front Microbiol ; 8: 533, 2017.
Article in English | MEDLINE | ID: mdl-28443068

ABSTRACT

Probiotics have been demonstrated to be useful to enhance gut health and prevent gastrointestinal infections. The objective of this study is to demonstrate the potential of the probiotic strain Bifidobacterium longum subsp. infantis CECT 7210 (B. infantis IM1) to prevent and fight intestinal disease by using a Salmonella Typhimurium (Trial 1) or an enterotoxigenic Escherichia coli K88 (Trial 2) oral challenge in a weaning piglet model. Seventy-two piglets were used in each trial. After an adaptation period, animals were orally challenged. One animal per pen was euthanized at Days 4 and 8/9 (Trial 1/Trial 2) post-inoculation (PI). Animal performance, clinical signs, pathogen excretion, fermentation, immune response, and intestinal morphology were evaluated. In Trial 1, most parameters responded to the challenge, whereas, in Trial 2, effects were much milder. Consistent effects of the probiotic were detected in both experiments: Reduction of pathogen excretion (P = 0.043 on Day 3 PI, Trial 1) or ileal colonization (33% reduction of animals with countable coliforms; P = 0.077, Trial 2); increases in intraepithelial lymphocytes (P = 0.002 on Day 8 PI in Trial 1, P = 0.091 on Day 4 PI in Trial 2), and improvement of the fermentation profile by increasing butyric acid in non-challenged animals [P challenge × probiotic (interaction) = 0.092 in Trial 1 and P = 0.056 in Trial 2] concomitant with an enhancement of the villus:crypt ratio on Day 8/9 PI (P interaction = 0.091 for Trial 1 and P = 0.006 for Trial 2). Challenged animals treated with the probiotic showed reduced feed intakes (P interaction = 0.019 in Trial 1 and P = 0.020 in Trial 2) and had lower short-chain fatty acid concentrations in the colon (P interaction = 0.008 in Trial 1 and P = 0.082 in Trial 2). In conclusion, this probiotic demonstrated potential to reduce the intestinal colonization by pathogens and to stimulate local immune response. However, effects on feed intake, microbial fermentation, and intestinal architecture showed a differential pattern between challenged and non-challenged animals. Effects of the probiotic intervention were dependent on the structure of the ecosystem in which it was applied.

SELECTION OF CITATIONS
SEARCH DETAIL
...