Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 15: 1361795, 2024.
Article in English | MEDLINE | ID: mdl-38694798

ABSTRACT

Introduction: Antimicrobial resistance (AMR) is a global health problem that requires early and effective treatments to prevent the indiscriminate use of antimicrobial drugs and the outcome of infections. Mass Spectrometry (MS), and more particularly MALDI-TOF, have been widely adopted by routine clinical microbiology laboratories to identify bacterial species and detect AMR. The analysis of AMR with deep learning is still recent, and most models depend on filters and preprocessing techniques manually applied on spectra. Methods: This study propose a deep neural network, MSDeepAMR, to learn from raw mass spectra to predict AMR. MSDeepAMR model was implemented for Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus under different antibiotic resistance profiles. Additionally, a transfer learning test was performed to study the benefits of adapting the previously trained models to external data. Results: MSDeepAMR models showed a good classification performance to detect antibiotic resistance. The AUROC of the model was above 0.83 in most cases studied, improving the results of previous investigations by over 10%. The adapted models improved the AUROC by up to 20% when compared to a model trained only with external data. Discussion: This study demonstrate the potential of the MSDeepAMR model to predict antibiotic resistance and their use on external MS data. This allow the extrapolation of the MSDeepAMR model to de used in different laboratories that need to study AMR and do not have the capacity for an extensive sample collection.

2.
Dent J (Basel) ; 12(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38668001

ABSTRACT

The dental treatment of patients with oral cavity and oropharyngeal squamous cell carcinoma (OOPSCC) may be challenging for dentists. This study aimed to characterize systemic changes in patients with OOPSCC undergoing dental treatment prior to cancer therapy, with a specific focus on laboratory assessments. The primary objectives included identifying potential adverse events, such as infections or bleeding, resulting from dental procedures. Additionally, the study aimed to correlate baseline patient characteristics with treatment-related toxicities. This was a prospective cohort study that included 110 OOPSCC patients referred to the Dental Oncology Service at São Paulo State Cancer Institute, Brazil, between November/2019 and December/2020. Comorbidities, sociodemographic data, medication in use, cancer treatment-related toxicities, and altered laboratory tests results were correlated. The most common comorbidities and altered laboratory results were hypertension, dyslipidemia, diabetes, as well as elevated levels of C-reactive protein, hemoglobin, and hematocrit. Toxicities exhibited a progressive pattern over time, encompassing oral mucositis (OM), xerostomia, dysphagia, dysgeusia, trismus, and radiodermatitis. No correlation between comorbidities and cancer treatment-related toxicities, a positive correlation between medications in use and OM, and a negative correlation between medications and dysgeusia were found. OM was associated with altered thyroxine (T4) and free thyroxine (FT4), calcium, urea, creatinine, alkaline phosphatase, and syphilis. Family income and housing were OM predictors. Altered T4/FT4/urea/calcium/alkaline phosphatase/creatinine/syphilis may be useful clinical predictors of OM. Despite the elevated prevalence of comorbidities and abnormal laboratory findings, dental treatment prior to cancer treatment yielded no adverse events.

3.
Front Pharmacol ; 12: 613105, 2021.
Article in English | MEDLINE | ID: mdl-33746753

ABSTRACT

Interleukin-1ß (IL-1ß) is an important cytokine that modulates peripheral and central pain sensitization at the spinal level. Among its effects, it increases spinal cord excitability by reducing inhibitory Glycinergic and GABAergic neurotransmission. In the brain, IL-1ß is released by glial cells in regions associated with pain processing during neuropathic pain. It also has important roles in neuroinflammation and in regulating NMDA receptor activity required for learning and memory. The modulation of glycine-mediated inhibitory activity via IL-1ß may play a critical role in the perception of different levels of pain. The central nucleus of the amygdala (CeA) participates in receiving and processing pain information. Interestingly, this nucleus is enriched in the regulatory auxiliary glycine receptor (GlyR) ß subunit (ßGlyR); however, no studies have evaluated the effect of IL-1ß on glycinergic neurotransmission in the brain. Hence, we hypothesized that IL-1ß may modulate GlyR-mediated inhibitory activity via interactions with the ßGlyR subunit. Our results show that the application of IL-1ß (10 ng/ml) to CeA brain slices has a biphasic effect; transiently increases and then reduces sIPSC amplitude of CeA glycinergic currents. Additionally, we performed molecular docking, site-directed mutagenesis, and whole-cell voltage-clamp electrophysiological experiments in HEK cells transfected with GlyRs containing different GlyR subunits. These data indicate that IL-1ß modulates GlyR activity by establishing hydrogen bonds with at least one key amino acid residue located in the back of the loop C at the ECD domain of the ßGlyR subunit. The present results suggest that IL-1ß in the CeA controls glycinergic neurotransmission, possibly via interactions with the ßGlyR subunit. This effect could be relevant for understanding how IL-1ß released by glia modulates central processing of pain, learning and memory, and is involved in neuroinflammation.

4.
Food Chem ; 168: 464-70, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25172736

ABSTRACT

Polyvinylpolypyrrolidone (PVPP) is a fining agent, widely used in winemaking and brewing, whose mode of action in removing phenolic compounds has not been fully characterised. The aim of this study was to evaluate the experimental and theoretical binding affinity of PVPP towards six phenolic compounds representing different types of phenolic species. The interaction between PVPP and phenolics was evaluated in model solutions, where hydroxyl groups, hydrophobic bonding and steric hindrance were characterised. The results of the study indicated that PVPP exhibits high affinity for quercetin and catechin, moderate affinity for epicatechin, gallic acid and lower affinity for 4-methylcatechol and caffeic acid. The affinity has a direct correlation with the hydroxylation degree of each compound. The results show that the affinity of PVPP towards phenols is related with frontier orbitals. This work demonstrates a direct correlation between the experimental affinity and the interaction energy calculations obtained through computational chemistry methods.


Subject(s)
Food , Models, Theoretical , Phenols/chemistry , Povidone/analogs & derivatives , Adsorption , Catechin/chemistry , Catechin/isolation & purification , Catechols/chemistry , Catechols/isolation & purification , Food/standards , Gallic Acid/chemistry , Gallic Acid/isolation & purification , Molecular Structure , Phenols/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Povidone/chemistry , Quercetin/chemistry , Quercetin/isolation & purification , Solutions
5.
PLoS One ; 8(2): e55664, 2013.
Article in English | MEDLINE | ID: mdl-23457475

ABSTRACT

Paralytic shellfish poisoning toxins (PSTs) are a family of more than 30 natural alkaloids synthesized by dinoflagellates and cyanobacteria whose toxicity in animals is mediated by voltage-gated Na(+) channel blocking. The export of PST analogues may be through SxtF and SxtM, two putative MATE (multidrug and toxic compound extrusion) family transporters encoded in PSTs biosynthetic gene cluster (sxt). sxtM is present in every sxt cluster analyzed; however, sxtF is only present in the Cylindrospermopsis-Raphidiopsis clade. These transporters are energetically coupled with an electrochemical gradient of proton (H(+)) or sodium (Na(+)) ions across membranes. Because the functional role of PSTs remains unknown and methods for genetic manipulation in PST-producing organisms have not yet been developed, protein structure analyses will allow us to understand their function. By analyzing the sxt cluster of eight PST-producing cyanobacteria, we found no correlation between the presence of sxtF or sxtM and a specific PSTs profile. Phylogenetic analyses of SxtF/M showed a high conservation of SxtF in the Cylindrospermopsis-Raphidiopsis clade, suggesting conserved substrate affinity. Two domains involved in Na(+) and drug recognition from NorM proteins (MATE family) of Vibrio parahaemolyticus and V. cholerae are present in SxtF/M. The Na(+) recognition domain was conserved in both SxtF/M, indicating that Na(+) can maintain the role as a cation anti-transporter. Consensus motifs for toxin binding differed between SxtF and SxtM implying differential substrate binding. Through protein modeling and docking analysis, we found that there is no marked affinity between the recognition domain and a specific PST analogue. This agrees with our previous results of PST export in R. brookii D9, where we observed that the response to Na(+) incubation was similar to different analogues. These results reassert the hypothesis regarding the involvement of Na(+) in toxin export, as well as the motifs L(398)XGLQD(403) (SxtM) and L(390)VGLRD(395) (SxtF) in toxin recognition.


Subject(s)
Bacterial Proteins/metabolism , Cylindrospermopsis/metabolism , Marine Toxins/metabolism , Membrane Transport Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biological Transport, Active , Computer Simulation , Cylindrospermopsis/chemistry , Cylindrospermopsis/genetics , Marine Toxins/chemistry , Marine Toxins/genetics , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Models, Molecular , Multigene Family , Phylogeny , Protein Conformation , Saxitoxin/analogs & derivatives , Saxitoxin/genetics , Saxitoxin/metabolism
6.
J Agric Food Chem ; 59(13): 7310-6, 2011 Jul 13.
Article in English | MEDLINE | ID: mdl-21591781

ABSTRACT

3-Alkyl-2-methoxypyrazines (MPs) are an important food constituent and have been associated with detrimental herbaceous flavors in red wines by consumers and the wine industry. The Vitis vinifera genes O-methyltransferase 1 and 2 (VvOMT1 and VvOMT2) have been isolated in the grapevine cultivar Carmenere. These genes encode S-adenosyl-l-methionine (SAM)-dependent O-methyltransferases, which have the ability to methylate 3-alkyl-2-hydroxypyrazines (HPs)-the putative final step in MPs production. Atomic studies were performed in order to explain the differences in these VvOMT activities through their structural/functional relationship in MPs biosynthesis. Differences in enthalpy energy observed between the proteins may be due to changes of equivalent residues in the active sites of VvOMT1 (F319, L322) and VvOMT2 (L319, V322). However, docking simulations and QM/MM analyses described how residues H272 and M182 could explain the main functional differentiation observed between VvOMT1 and VvOMT2 through steric impediment, which limits the formation of the transition state in enzymes encoded by VvOMT2. Therefore, this finding could explain the decreasing catalytic efficiency observed for VvOMT2.


Subject(s)
Methyltransferases/metabolism , Pyrazines/metabolism , Vitis/enzymology , Amino Acid Sequence , Methyltransferases/chemistry , Methyltransferases/genetics , Models, Molecular , Molecular Sequence Data , Structure-Activity Relationship , Thermodynamics , Vitis/genetics , Wine
SELECTION OF CITATIONS
SEARCH DETAIL
...