Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2408: 227-242, 2022.
Article in English | MEDLINE | ID: mdl-35325426

ABSTRACT

RNAi-based tools are widely used in gene function studies and for crop improvement. However, no effective methods for precisely controlling the degree of induced silencing have been reported until recently. Here we report a detailed protocol for designing and generating synthetic trans-acting small interfering RNA (syn-tasiRNA) constructs for fine-tuning gene expression in plants. Recently developed high-throughput AtTAS1c-D2-B/c-based vectors are used to clone and express syn-tasiRNAs that possess different efficacies depending on their precursor location and on their degree of base-pairing with the 5' end of target RNAs.


Subject(s)
MicroRNAs , Gene Expression , MicroRNAs/genetics , Plants/genetics , Plants/metabolism , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
2.
Nucleic Acids Res ; 48(11): 6234-6250, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32396204

ABSTRACT

Eukaryotic RNA interference (RNAi) results in gene silencing upon the sequence-specific degradation of target transcripts by complementary small RNAs (sRNAs). In plants, RNAi-based tools have been optimized for high efficacy and high specificity, and are extensively used in gene function studies and for crop improvement. However, efficient methods for finely adjusting the degree of induced silencing are missing. Here, we present two different strategies based on artificial sRNAs for fine-tuning targeted RNAi efficacy in plants. First, the degree of silencing induced by synthetic-trans-acting small interfering RNAs (syn-tasiRNAs) can be adjusted by modifying the precursor position from which the syn-tasiRNA is expressed. The accumulation and efficacy of Arabidopsis TAS1c-based syn-tasiRNAs progressively decrease as the syn-tasiRNA is expressed from positions more distal to the trigger miR173 target site. And second, syn-tasiRNA activity can also be tweaked by modifying the degree of base-pairing between the 3' end of the syn-tasiRNA and the 5' end of the target RNA. Both strategies were used to finely modulate the degree of silencing of endogenous and exogenous target genes in Arabidopsis thaliana and Nicotiana benthamiana. New high-throughput syn-tasiRNA vectors were developed and functionally analyzed, and should facilitate the precise control of gene expression in multiple plant species.


Subject(s)
Arabidopsis/genetics , Gene Expression Regulation, Plant , MicroRNAs/genetics , RNA Interference , RNA, Small Interfering/genetics , Base Pairing , Base Sequence , Genetic Vectors , MicroRNAs/metabolism , RNA, Small Interfering/metabolism , Nicotiana/genetics , Nicotiana/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...