Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 153(2): 024117, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32668924

ABSTRACT

First-principles electronic structure calculations are now accessible to a very large community of users across many disciplines, thanks to many successful software packages, some of which are described in this special issue. The traditional coding paradigm for such packages is monolithic, i.e., regardless of how modular its internal structure may be, the code is built independently from others, essentially from the compiler up, possibly with the exception of linear-algebra and message-passing libraries. This model has endured and been quite successful for decades. The successful evolution of the electronic structure methodology itself, however, has resulted in an increasing complexity and an ever longer list of features expected within all software packages, which implies a growing amount of replication between different packages, not only in the initial coding but, more importantly, every time a code needs to be re-engineered to adapt to the evolution of computer hardware architecture. The Electronic Structure Library (ESL) was initiated by CECAM (the European Centre for Atomic and Molecular Calculations) to catalyze a paradigm shift away from the monolithic model and promote modularization, with the ambition to extract common tasks from electronic structure codes and redesign them as open-source libraries available to everybody. Such libraries include "heavy-duty" ones that have the potential for a high degree of parallelization and adaptation to novel hardware within them, thereby separating the sophisticated computer science aspects of performance optimization and re-engineering from the computational science done by, e.g., physicists and chemists when implementing new ideas. We envisage that this modular paradigm will improve overall coding efficiency and enable specialists (whether they be computer scientists or computational scientists) to use their skills more effectively and will lead to a more dynamic evolution of software in the community as well as lower barriers to entry for new developers. The model comes with new challenges, though. The building and compilation of a code based on many interdependent libraries (and their versions) is a much more complex task than that of a code delivered in a single self-contained package. Here, we describe the state of the ESL, the different libraries it now contains, the short- and mid-term plans for further libraries, and the way the new challenges are faced. The ESL is a community initiative into which several pre-existing codes and their developers have contributed with their software and efforts, from which several codes are already benefiting, and which remains open to the community.

2.
Angew Chem Int Ed Engl ; 54(13): 3917-21, 2015 Mar 23.
Article in English | MEDLINE | ID: mdl-25651288

ABSTRACT

Water dissociation is crucial in many catalytic reactions on oxide-supported transition-metal catalysts. Supported by experimental and density-functional theory results, the effect of the support on OH bond cleavage activity is elucidated for nickel/ceria systems. Ambient-pressure O 1s photoemission spectra at low Ni loadings on CeO2 (111) reveal a substantially larger amount of OH groups as compared to the bare support. Computed activation energy barriers for water dissociation show an enhanced reactivity of Ni adatoms on CeO2 (111) compared with pyramidal Ni4 particles with one Ni atom not in contact with the support, and extended Ni(111) surfaces. At the origin of this support effect is the ability of ceria to stabilize oxidized Ni(2+) species by accommodating electrons in localized f-states. The fast dissociation of water on Ni/CeO2 has a dramatic effect on the activity and stability of this system as a catalyst for the water-gas shift and ethanol steam reforming reactions.

3.
J Phys Chem A ; 116(10): 2394-404, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-22320704

ABSTRACT

A new full-dimension potential energy surface of the three-body He-Rb2(³Σ(u)(+)) complex and a quantum study of small (4He)(N)-Rb2(³Σ(u)(+)) clusters, 1 ≤ N ≤ 4, are presented. We have accurately fitted the ab initio points of the interaction to an analytical form and addressed the dopant's vibration, which is found to be negligible. A Variational approach and a Diffusion Monte Carlo technique have been applied to yield energy and geometric properties of the selected species. Our quantum structure calculations show a transition in the arrangements of the helium atoms from N = 2, where they tend to be separated across the diatomic bond, to N = 4, in which a closer packing of the rare gas particles is reached, guided by the dominance of the He-He potential over the weaker interaction of the latter adatoms with the doping dimer. The deepest well of the He-Rb2 interaction is placed at the T-shape configuration, a feature which causes the dopant to be located as parallel to the helium "minidroplet". Our results are shown to agree with previous findings on this and on similar systems.

4.
J Phys Chem A ; 115(25): 6892-902, 2011 Jun 30.
Article in English | MEDLINE | ID: mdl-21585200

ABSTRACT

We present in this work the study of small (4)He(N)-Cs(2)((3)Σ(u)) aggregates (2 ≤ N ≤ 30) through combined variational, diffusion Monte Carlo (DMC), and path integral Monte Carlo (PIMC) calculations. The full surface is modeled as an addition of He-Cs(2) interactions and He-He potentials. Given the negligible strength and large range of the He-Cs(2) interaction as compared with the one for He-He, a propensity of the helium atoms to pack themselves together, leaving outside the molecular dopant is to be expected. DMC calculations determine the onset of helium gathering at N = 3. To analyze energetic and structural properties as a function of N, PIMC calculations with no bosonic exchange, i.e., Boltzmann statistics, at low temperatures are carried out. At T = 0.1 K, although acceptable one-particle He-Cs(2) distributions are obtained, two-particle He-He distributions are not well described, indicating that the proper symmetry should be taken into account. PIMC distributions at T = 1 K already compare well with DMC ones and show minor exchange effects, although binding energies are still far from having converged in terms of the number of quantum beads. As N increases, the He-He PIMC pair correlation function shows a clear tendency to coincide with the experimental boson-liquid helium one at that temperature. It supports the picture of a helium droplet which carries the molecular impurity on its surface, as found earlier for other triplet dimers.

5.
Chemphyschem ; 6(7): 1348-56, 2005 Jul 11.
Article in English | MEDLINE | ID: mdl-15968696

ABSTRACT

The Born-Oppenheimer potential energy surface for the Br2(X) molecule interacting with a varying number of 4He bosons is constructed following two different schemes which employ either a full ab initio evaluation of the Br2-He interaction forces or an estimate of the latter through an empirical model. Both descriptions are employed by carrying out diffusion Monte Carlo (DMC) calculations of the ground-state energies and quantum wavefunctions for Br2-(He)n clusters with n up to 24. The results clearly indicate, for both interactions, the occurrence of the full solvation of the molecular dopant within the quantum bosonic "solvent" but also show differences between the two models in terms of the expected density distributions of the surrounding particles within the shorter-range region that makes up the clusters with smaller n values. Our calculations also show that such differences become insignificant for the larger 4He clusters surrounding the Br2 molecule, where density profiles and bulk behaviour are chiefly driven by the solvent structure, once n values reach the region of 15-20 adatoms.

SELECTION OF CITATIONS
SEARCH DETAIL
...