Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 22(37): 375704, 2011 Sep 16.
Article in English | MEDLINE | ID: mdl-21852734

ABSTRACT

Kelvin probe microscopy implemented with controlled sample illumination is used to study nanoscale surface photovoltage effects. With this objective a two trace method, where each scanning line is measured with and without external illumination, is proposed. This methodology allows a direct comparison of the contact potential images acquired in darkness and under illumination and, therefore, the surface photovoltage is simply inferred. Combined with an appropriate data analysis, the temporal and spatial evolution of reversible and irreversible photo-induced processes can be obtained. The potential and versatility of this technique is applied to MEH-PPV thin films. Photo-physical phenomena such as the mesoscale polymer electronic light-induced response as well as the local nanoscale electro-optical properties are studied.

2.
J Biomed Mater Res B Appl Biomater ; 83(1): 232-9, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17385221

ABSTRACT

The properties of hybrid aminopropyltriethoxysilane-tetraisopropylorthotitanate (APTS-TIPT) platforms prepared by a sol-gel route have been explored, and their biocompatibility was assayed after culture of human mesenchymal stem cells (hMSCs). The organic content of this material was observed to be preferably surface-oriented as indicated by microanalytical techniques. Furthermore, the surface showed characteristic amino-silane bands when explored by Raman spectroscopy as well as indications of silane and titanate condensation. Surface activity of the amino groups was probed by ultraviolet-visible spectroscopy imine derivatization and chemical force spectroscopy, showing a pH-dependent surface charge-induced potential. hMSCs cultured onto these surfaces showed relevant differences with respect to their behavior on gelatin-coated glass plates. Even if with a lower proliferative rate than controls, the cells develop long cytosolic prolongations in osteogenic differentiation medium, thus, supporting the idea of an APTS-TIPT stimulated process.


Subject(s)
Biocompatible Materials/metabolism , Mesenchymal Stem Cells/physiology , Silanes/metabolism , Titanium/metabolism , Biocompatible Materials/chemistry , Cells, Cultured , Humans , Hydrogen-Ion Concentration , Imines/chemistry , Materials Testing , Mesenchymal Stem Cells/cytology , Silanes/chemistry , Titanium/chemistry
3.
Biosens Bioelectron ; 22(12): 2786-9, 2007 Jun 15.
Article in English | MEDLINE | ID: mdl-17229567

ABSTRACT

A plasma discharge process has been developed that allows the growth of biosensor gate oxides with adapted surface properties for the direct application of biomolecular immobilization cascades. The process involves an accurate selection of processing conditions, mainly, low temperature evaporation of (3-aminopropyl)triethoxysilane (APTS) and dynamic power and flow conditions. Room temperature evaporation of APTS was achieved by designing a vessel with an internal capillary network. The initial high power (100 W) plasma conditions were replaced by milder molecular fragmentation (50 W, 25 W) in a pure Ar discharge. Under these conditions the thin SiO(2) layers presented graded properties with a denser layer at the Si (100) interface and a hybrid organic-inorganic structure at the surface. The chemistry of the films was analysed by Fourier transformed infrared spectroscopy (FTIR) and Rutherford backscattering spectroscopy combined with elastic recoil detection analysis (RBS, ERDA), which confirmed the presence of the SiO(2) and organic phases. Contact angle measurements indicate the higher contribution of the basic polar component to the surface free energy. Furthermore, the higher affinity of the surface towards biomolecular immobilization was confirmed by fluorescence microscopy. Finally, penetration of nitrobenzaldehyde was obtained by application of a molecular permeation method evaluated by UV-vis spectroscopy onto fused silica substrates.


Subject(s)
Biosensing Techniques/instrumentation , Transistors, Electronic , Propylamines , Silanes , Silicon Dioxide , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...