Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Methods Programs Biomed ; 162: 165-175, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29903483

ABSTRACT

BACKGROUND AND OBJECTIVES: Currently, telemedicine is levered upon the improvement in communication network technology such as Body Area Sensor Networks (BASN) to provided biomedicine solutions. Nevertheless, information security is an important issue since biomedical data is exchanged through insecure channels, which exposes private information that can be intercepted by malicious intruder. Therefore, secure communication protocols for multiuser networks in telemedicine applications are a big challenge. Recent chaos-based encryption works have been conducted in the area of medical secure communications with high security capabilities. However, none of them has considered multiuser network, which is used in several e-health applications. Up to our knowledge, the proposed protocol is the first attempt to consider this service in secure telemedicine. In this paper, we propose a novel scheme based on binary phase-shift key (BPSK) and chaos to provide information security at biosignals in a multiuser network system transmitting data over single channel. METHODS: The proposed scheme uses the two-dimensional Hénon map with enhance pseudorandom sequences and CDMA technique to achieve multiuser encryption process and transmit data over a single channel. We use biosignals such as electrocardiograms (ECG) and blood pressure (PB) signals from PhisioBank ATM data base for simulation results at MatLab software. We evaluate the security and performance by determining the secret key space, secret key sensitivity, resistance against noise attack with quality analysis by using BER, MSE, and PSNR, encryption-decryption time, and throughput. RESULTS: In simulations tests, biosignals of ECG and BP in a BANS network are encrypted and transmitted over shared wireless channels and just authorized medical personal can retrieve such information with corresponding secret key from the cryptogram, that appears as noise to any intruder. The proposed multiuser scheme support high noise and interference attacks efficiently in contrast with classic chaos-based encryption works for telemedicine, where some scenarios are simulated with very low BER, very low MSE, and high PSNR between plain biosignals and recovered biosignals when high AWGN noise is added to encrypted-transmitted signal. In addition, the encryption process presents enough key space and high sensitivity at secret key. A comparative analysis of proposed method and recent existing works was also presented. CONCLUSIONS: Patients can be monitored and diagnosed opportunely remotely and all their medical information is transmitted securely to the correct specialist. Also, it is possible to transmit several electrophysiological signals in a single channel in a secure multiuser network at low cost optimizing the use of available bandwidth for telemedicine applications.


Subject(s)
Communication , Computers , Signal Processing, Computer-Assisted , Telemedicine/methods , Algorithms , Animals , Blood Pressure , Computer Security , Computer Simulation , Electrocardiography , Electroencephalography , Humans , Information Systems , Monitoring, Ambulatory , Nonlinear Dynamics , Rats , Rats, Inbred Dahl , Software
2.
J Med Syst ; 41(4): 59, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28247306

ABSTRACT

Recently, telemedicine offers medical services remotely via telecommunications systems and physiological monitoring devices. This scheme provides healthcare delivery services between physicians and patients conveniently, since some patients can not attend the hospital due to any reason. However, transmission of information over an insecure channel such as internet or private data storing generates a security problem. Therefore, authentication, confidentiality, and privacy are important challenges in telemedicine, where only authorized users should have access to medical or clinical records. On the other hand, chaotic systems have been implemented efficiently in cryptographic systems to provide confidential and privacy. In this work, we propose a novel symmetric encryption algorithm based on logistic map with double chaotic layer encryption (DCLE) in diffusion process and just one round of confusion-diffusion for the confidentiality and privacy of clinical information such as electrocardiograms (ECG), electroencephalograms (EEG), and blood pressure (BP) for applications in telemedicine. The clinical signals are acquired from PhysioBank data base for encryption proposes and analysis. In contrast with recent schemes in literature, we present a secure cryptographic algorithm based on chaos validated with the most complete security analysis until this time. In addition, the cryptograms are validated with the most complete pseudorandomness tests based on National Institute of Standards and Technology (NIST) 800-22 suite. All results are at MATLAB simulations and all them show the effectiveness, security, robustness, and the potential use of the proposed scheme in telemedicine.


Subject(s)
Algorithms , Computer Security/instrumentation , Confidentiality , Telemedicine/instrumentation , Blood Pressure , Electrocardiography , Electroencephalography , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...