Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phytopathology ; 113(9): 1773-1787, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36880795

ABSTRACT

Seed transmission is a major mode for plant virus persistence and dispersal, as it allows for virus survival within the seed in unfavorable conditions and facilitates spread when they become more favorable. To access these benefits, viruses require infected seeds to remain viable and germinate in altered environmental conditions, which may also be advantageous for the plant. However, how environmental conditions and virus infection affect seed viability, and whether these effects modulate seed transmission rate and plant fitness, is unknown. To address these questions, we utilized turnip mosaic virus, cucumber mosaic virus, and Arabidopsis thaliana as model systems. Using seeds from plants infected by these viruses, we analyzed seed germination rates, as a proxy of seed viability, and virus seed transmission rate under standard and altered temperature, CO2, and light intensity. With these data, we developed and parameterized a mathematical epidemiological model to explore the consequences of the observed alterations on virus prevalence and persistence. Altered conditions generally reduced overall seed viability and increased virus transmission rate compared with standard conditions, which indicated that under environmental stress, infected seeds are more viable. Hence, virus presence may be beneficial for the host. Subsequent simulations predicted that enhanced viability of infected seeds and higher virus transmission rate may increase virus prevalence and persistence in the host population under altered conditions. This work provides novel information on the influence of the environment in plant virus epidemics. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Arabidopsis , Plant Viruses , Plant Diseases , Seeds , Plants
2.
J Virol ; 93(23)2019 12 01.
Article in English | MEDLINE | ID: mdl-31511374

ABSTRACT

Although vertical transmission from parents to offspring through seeds is an important fitness component of many plant viruses, very little is known about the factors affecting this process. Viruses reach the seed by direct invasion of the embryo and/or by infection of the ovules or the pollen. Thus, it can be expected that the efficiency of seed transmission would be determined by (i) virus within-host multiplication and movement, (ii) the ability of the virus to invade gametic tissues, (iii) plant seed production upon infection, and (iv) seed survival in the presence of the virus. However, these predictions have seldom been experimentally tested. To address this question, we challenged 18 Arabidopsis thaliana accessions with Turnip mosaic virus and Cucumber mosaic virus Using these plant-virus interactions, we analyzed the relationship between the effect of virus infection on rosette and inflorescence weights; short-, medium-, and long-term seed survival; virulence; the number of seeds produced per plant; virus within-host speed of movement; virus accumulation in the rosette and inflorescence; and efficiency of seed transmission measured as a percentage and as the total number of infected seeds. Our results indicate that the best estimators of percent seed transmission are the within-host speed of movement and multiplication in the inflorescence. Together with these two infection traits, virulence and the number of seeds produced per infected plant were also associated with the number of infected seeds. Our results provide support for theoretical predictions and contribute to an understanding of the determinants of a process central to plant-virus interactions.IMPORTANCE One of the major factors contributing to plant virus long-distance dispersal is the global trade of seeds. This is because more than 25% of plant viruses can infect seeds, which are the main mode of germplasm exchange/storage, and start new epidemics in areas where they were not previously present. Despite the relevance of this process for virus epidemiology and disease emergence, the infection traits associated with the efficiency of virus seed transmission are largely unknown. Using turnip mosaic and cucumber mosaic viruses and their natural host Arabidopsis thaliana as model systems, we have identified the within-host speed of virus colonization and multiplication in the reproductive structures as the main determinants of the efficiency of seed transmission. These results contribute to shedding light on the mechanisms by which plant viruses disperse and optimize their fitness and may help in the design of more-efficient strategies to prevent seed infection.


Subject(s)
Disease Transmission, Infectious , Plant Diseases/virology , Plant Viruses/growth & development , Arabidopsis/virology , Cucumovirus/pathogenicity , Host-Pathogen Interactions/physiology , Models, Biological , Phenotype , Potyvirus/pathogenicity , Seeds/virology , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...