Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mikrochim Acta ; 190(5): 168, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37012526

ABSTRACT

A new electrochemical sensor device has been developed through the modification of a polyaniline-silicon oxide network with carbon black (CB). Enhanced electrical conductivity and antifouling properties have been achieved due to the integration of this cheap nanomaterial into the bulk of the sensor. The structure of the developed material was characterized using Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and scanning electron microscopy techniques. Cyclic voltammetry was used to characterize electrochemically the Sonogel-Carbon/Carbon Black-PANI (SNG-C/CB-PANI) sensor device. In addition, differential pulse voltammetry was employed to evaluate the analytical response of the sensor towards sundry chlorophenols, common environmental hazards in aqueous ecosystems. The modified sensor material showed excellent antifouling properties, which led to a better electroanalytical performance than the one displayed with the bare sensor. Notably, a sensitivity of 5.48 × 103 µA mM-1 cm-2 and a limit of detection of 0.83 µM were obtained in the determination of 4-chloro-3-methylphenol (PCMC) at a working potential of 0.78 V (vs. 3 M Ag/AgCl/KCl), along with proficient values of reproducibility and repeatability (relative standard deviation < 3%). Finally, the analysis of PCMC was carried out in multiple validated water samples using the synthesized SNG-C/CB-PANI sensor device, obtaining excellent results of recovery values (97-104%). The synergetic effect of polyaniline and carbon black leads to novel antifouling and electrocatalytic effects that improve the applicability of this sensor in sample analysis versus complex conventional devices.

2.
Sensors (Basel) ; 21(24)2021 Dec 18.
Article in English | MEDLINE | ID: mdl-34960563

ABSTRACT

In this work, template-free nanostructured conducting polymers (nCPs)-embedded gold nanoparticles (AuNPs) from aniline, thiophene and 3,4-ethylenedioxythiophene have been prepared via a one-pot sonochemical method. The synthesis of the nanocomposite (nCPs-AuNPs) was achieved in a short period of time (5-10 min), by applying high-energy ultrasound to an aqueous mixture of a CP precursor monomer and KAuCl4, in the presence of LiClO4 as dopant. The synthesis process is simpler, greener and faster in comparison to other procedures reported in the literature. Remarkably, bulk quantities of doped polyaniline PANI-AuNPs nanofibers were obtained. Subsequently, they were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR), as well as by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). PANI-AuNPs nanofibers were also employed as immobilization matrix for a benchmark enzyme, glucose oxidase (GOX). Finally, glucose was determined in real samples of white and red wines by using the so-obtained GOX-PANI-AuNPs/Sonogel-Carbon biosensor, providing outstanding recoveries (99.54%). This work may offer important insights into the synthesis of nanostructured conducting polymers and also stimulates the exploration of the applications of these nanocomposites, especially in research fields such as (bio)sensors, catalysis and composite materials.


Subject(s)
Metal Nanoparticles , Nanofibers , Aniline Compounds , Gold
3.
Sensors (Basel) ; 21(15)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34372213

ABSTRACT

Conducting polymers (CPs) are extensively studied due to their high versatility and electrical properties, as well as their high environmental stability. Based on the above, their applications as electronic devices are promoted and constitute an interesting matter of research. This review summarizes their application in common electronic devices and their implementation in electronic tongues and noses systems (E-tongues and E-noses, respectively). The monitoring of diverse factors with these devices by multivariate calibration methods for different applications is also included. Lastly, a critical discussion about the enclosed analytical potential of several conducting polymer-based devices in electronic systems reported in literature will be offered.


Subject(s)
Biosensing Techniques , Polymers , Electronic Nose , Electronics , Tongue
4.
Mater Sci Eng C Mater Biol Appl ; 123: 112023, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33812640

ABSTRACT

The present study is focused on the ultrafast and green synthesis, via the co-precipitation method, of magnetic nanoparticles (MNPs) based on iron oxides using design of experiments (DOE) and high energy sonochemical approach, considering two main factors: amplitude (energy) of the ultrasound probe and sonication time. The combination of these techniques allowed the development of a novel one-minute green synthesis, which drastically reduced the amount of consumed energy, solvents, reagents, time and produced residues. This green sonochemical synthesis permitted to obtain mean particle sizes of 11 ± 2 nm under the optimized conditions of amplitude = 40% (2826 J) and time = 1 min. Their composition, structure, size, morphology and magnetic properties were assessed through X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning and transmission electron microscopy (SEM & TEM), and vibrating sample magnetometry (VSM). The characterization results indicate the proper formation of MNPs, and the correct functionalization of MNPs with different coating agents. The functionalized MNPs were used as: i) biosensor, which could detect mercury in water in the range of 0.030-0.060 ppm, and ii) support onto which polyclonal antibodies were anchored and successfully bound to an osteosarcoma cell line expressing the target protein (TRIB2-GFP), as part of an immunoprecipitation assay.


Subject(s)
Magnetite Nanoparticles , Immunoprecipitation , Magnetic Iron Oxide Nanoparticles , Magnetic Phenomena , Magnetics , Spectroscopy, Fourier Transform Infrared
5.
Sensors (Basel) ; 22(1)2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35009659

ABSTRACT

In this work, the development of an electrochemical sensor for melatonin determination is presented. The sensor was based on Sonogel-Carbon electrode material (SNGCE) and Au nanoparticles (AuNPs). The low-cost and environmentally friendly SNGCE material was prepared by the ultrasound-assisted sonogel method. AuNPs were prepared by a chemical route and narrow size distribution was obtained. The electrochemical characterization of the SNGCE/AuNP sensor was carried out by cyclic voltammetry in the presence of a redox probe. The analytical performance of the SNGCE/AuNP sensor in terms of linear response range, repeatability, selectivity, and limit of detection was investigated. The optimized SNGCE/AuNP sensor displayed a low detection limit of 8.4 nM melatonin in synthetic samples assessed by means of the amperometry technique. The potential use of the proposed sensor in real sample analysis and the anti-matrix capability were assessed by a recovery study of melatonin detection in human peripheral blood serum with good accuracy.


Subject(s)
Melatonin , Metal Nanoparticles , Carbon , Electrochemical Techniques , Electrodes , Gold , Humans , Limit of Detection
6.
Sensors (Basel) ; 19(1)2018 Dec 25.
Article in English | MEDLINE | ID: mdl-30585182

ABSTRACT

The application of a novel Poly(3,4-ethylenedioxythiophene)-Tyrosinase/Sonogel-Carbon electrode (PEDOT-Tyr/SNGC) biosensor to beers and wines analysis is proposed. This biosensor implies a new Sinusoidal Current (SC) electrodeposition method to immobilize the enzyme generating a nanostructure surface. The biosensors were characterized electrochemically, employing cyclic voltammetry and electrochemical impedance spectroscopy. Sensitivity, limit of detection, and correlation coefficients of the linear fitting were 2.40 × 10-4 µA·µM-1, 4.33 µM, and R² = 0.9987, respectively. Caffeic acid is used as the reference polyphenol. A sampling of nine beers (four lager, three stout, and two non-alcoholic beers), and four wines (three red and one white wine) purchased in a local store was performed. The Polyphenol indeces for beers and wines have been assessed using the proposed biosensor, and the obtained values are in agreement with the literature data. Antioxidant properties of the samples using the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical spectrophotometric method were also evaluated. The correlation between the polyphenol index and the antioxidant capacity was obtained for beers and wines.

SELECTION OF CITATIONS
SEARCH DETAIL
...