Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Xenobiot ; 14(2): 604-612, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38804288

ABSTRACT

Glyphosate, a widely used herbicide, is linked to a plethora of deleterious effects in both clinical and preclinical studies. Nevertheless, the effects of its main metabolite, aminomethylphosphonic acid (AMPA), whose half-life in soil is even longer than that of glyphosate, have been little explored. On this basis, as a first approach, in this work, we report that intraperitoneal (i.p.) administration of AMPA or glyphosate (at 10, 56, and 100 mg/kg) decreased, to a similar extent, plasma cholinesterase (ChE) activity in acutely exposed rats. Moreover, we designed an experimental protocol to analyze and compare the effects of AMPA and glyphosate on human plasma ChE activity; this protocol consisted of adding these compounds to human plasma to subsequently test the effects of this plasma on the contraction to acetylcholine (ACh) in the frog rectus abdominis muscle (an indirect estimate of ChE activity). Accordingly, this muscular contraction to ACh was evaluated before and after pre-incubation of ACh with (i) plasma alone, (ii) plasma with AMPA, and (iii) plasma with glyphosate. Our results indicate that AMPA, like glyphosate, decreased ChE activity in the plasma of rats (when given i.p.) and humans (when added in vitro), suggesting that both xenobiotics may exert similar toxicological effects.

2.
Drug Chem Toxicol ; : 1-5, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38465510

ABSTRACT

It has been reported that glyphosate, one of the most common herbicides used in agriculture, impairs locomotion and cognition. Glyphosate has a variable half-life in soil up to biotic and/or abiotic factors transform the molecule in metabolites such as the aminomethylphosphonic acid (AMPA) that has a longer half-life. In this study, female Sprague Dawley rats were acutely exposed to different doses of glyphosate or AMPA (i.e. 10, 56 or 100 mg/kg) and, subsequently, the acetylcholinesterase (AChE) activity was measured in the hippocampus, prefrontal cortex (PFC) and the gastrocnemius muscle. Both glyphosate and AMPA produced a similar decrease in the AChE activity in all the tissues tested. These results suggest that interference with normal cholinergic neurotransmission may be one of the mechanisms involved in glyphosate-induced motor alterations in rats. Moreover, our results highlight the biological importance of AMPA as a molecule with anticholinesterase action in brain and skeletal muscle. To our knowledge, this is the first report showing in vivo that AMPA, the major metabolite of glyphosate, behaves as an organophosphate.

SELECTION OF CITATIONS
SEARCH DETAIL
...