Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell ; 36(6): 2289-2309, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38466226

ABSTRACT

Flowering plant genomes encode four or five DICER-LIKE (DCL) enzymes that produce small interfering RNAs (siRNAs) and microRNAs, which function in RNA interference (RNAi). Different RNAi pathways in plants effect transposon silencing, antiviral defense, and endogenous gene regulation. DCL2 acts genetically redundantly with DCL4 to confer basal antiviral defense. However, DCL2 may also counteract DCL4 since knockout of DCL4 causes growth defects that are suppressed by DCL2 inactivation. Current models maintain that RNAi via DCL2-dependent siRNAs is the biochemical basis of both effects. Here, we report that DCL2-mediated antiviral resistance and growth defects cannot be explained by the silencing effects of DCL2-dependent siRNAs. Both functions are defective in genetic backgrounds that maintain high levels of DCL2-dependent siRNAs, either with specific point mutations in DCL2 or with reduced DCL2 dosage because of heterozygosity for dcl2 knockout alleles. Intriguingly, all DCL2 functions require its catalytic activity, and the penetrance of DCL2-dependent growth phenotypes in dcl4 mutants correlates with DCL2 protein levels but not with levels of major DCL2-dependent siRNAs. We discuss this requirement and correlation with catalytic activity but not with resulting siRNAs, in light of other findings that reveal a DCL2 function in innate immunity activation triggered by cytoplasmic double-stranded RNA.


Subject(s)
Arabidopsis Proteins , Arabidopsis , RNA Interference , Ribonuclease III , Arabidopsis/genetics , Arabidopsis/virology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Disease Resistance/genetics , Gene Expression Regulation, Plant , Mutation , Plant Diseases/virology , Plant Diseases/immunology , Plant Diseases/genetics , Ribonuclease III/genetics , Ribonuclease III/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
2.
J Exp Bot ; 74(19): 6052-6068, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37449766

ABSTRACT

Plants use different receptors to detect potential pathogens: membrane-anchored pattern recognition receptors (PRRs) activated upon perception of pathogen-associated molecular patterns (PAMPs) that elicit pattern-triggered immunity (PTI); and intracellular nucleotide-binding leucine-rich repeat proteins (NLRs) activated by detection of pathogen-derived effectors, activating effector-triggered immunity (ETI). The interconnections between PTI and ETI responses have been increasingly reported. Elevated NLR levels may cause autoimmunity, with symptoms ranging from fitness cost to developmental arrest, sometimes combined with run-away cell death, making accurate control of NLR dosage key for plant survival. Small RNA-mediated gene regulation has emerged as a major mechanism of control of NLR dosage. Twenty-two nucleotide miRNAs with the unique ability to trigger secondary siRNA production from target transcripts are particularly prevalent in NLR regulation. They enhance repression of the primary NLR target, but also bring about repression of NLRs only complementary to secondary siRNAs. We summarize current knowledge on miRNAs and siRNAs in the regulation of NLR expression with an emphasis on 22 nt miRNAs and propose that miRNA and siRNA regulation of NLR levels provides additional links between PTI and NLR defense pathways to increase plant responsiveness against a broad spectrum of pathogens and control an efficient deployment of defenses.


Subject(s)
MicroRNAs , Plant Immunity , Plant Immunity/genetics , Plants/metabolism , MicroRNAs/genetics , RNA, Small Interfering/genetics , Nucleotides , Plant Diseases , NLR Proteins/genetics
3.
Plant Cell ; 34(7): 2615-2637, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35404429

ABSTRACT

Immune responses triggered by pathogen-associated molecular patterns (PAMPs) are key to pathogen defense, but drivers and stabilizers of the growth-to-defense genetic reprogramming remain incompletely understood in plants. Here, we report a time-course study of the establishment of PAMP-triggered immunity (PTI) using cap analysis of gene expression. We show that around 15% of all transcription start sites (TSSs) rapidly induced during PTI define alternative transcription initiation events. From these, we identify clear examples of regulatory TSS change via alternative inclusion of target peptides or domains in encoded proteins, or of upstream open reading frames in mRNA leader sequences. We also find that 60% of PAMP response genes respond earlier than previously thought. In particular, a cluster of rapidly and transiently PAMP-induced genes is enriched in transcription factors (TFs) whose functions, previously associated with biological processes as diverse as abiotic stress adaptation and stem cell activity, appear to converge on growth restriction. Furthermore, examples of known potentiators of PTI, in one case under direct mitogen-activated protein kinase control, support the notion that the rapidly induced TFs could constitute direct links to PTI signaling pathways and drive gene expression changes underlying establishment of the immune state.


Subject(s)
Pathogen-Associated Molecular Pattern Molecules , Plant Immunity , Gene Expression Regulation, Plant/genetics , Mitogen-Activated Protein Kinases/metabolism , Pathogen-Associated Molecular Pattern Molecules/metabolism , Plant Diseases , Plant Immunity/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
4.
J Exp Bot ; 72(20): 7316-7334, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34329403

ABSTRACT

Plants encode numerous intracellular receptors known as nucleotide-binding leucine-rich repeat receptors (NLRs) that recognize pathogen-derived effectors or their activity to activate defenses. miRNAs regulate NLR genes in many species, often triggering the production of phased siRNAs (phasiRNAs). Most such examples involve genes encoding NLRs carrying coiled-coil domains, although a few include genes encoding NLRs carrying a Toll/interleukin-1 domain (TNL). Here, we characterize the role of miR825-5p in Arabidopsis, using a combination of bioinformatics, transgenic plants with altered miRNA levels and/or reporters, small RNAs, and virulence assays. We demonstrate that miR825-5p down-regulates the TNL MIST1 by targeting for endonucleolytic cleavage the sequence coding for TIR2, a highly conserved amino acid motif, linked to a catalytic residue essential for immune function. miR825-5p acts as a negative regulator of basal resistance against Pseudomonas syringae. miR825-5p triggers the production from MIST1 of a large number of phasiRNAs that can mediate cleavage of both MIST1 and additional TNL gene transcripts, potentially acting as a regulatory hub. miR825-5p is expressed in unchallenged leaves and transcriptionally down-regulated in response to pathogen-associated molecular patterns (PAMPs). Our results show that miR825-5p, which is required for full expression of PAMP-triggered immunity, establishes a link between PAMP perception and expression of uncharacterized TNL genes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Genes, Plant , Plant Diseases/genetics , Plant Immunity/genetics , Plants, Genetically Modified/genetics , Pseudomonas syringae
5.
New Phytol ; 231(3): 1138-1156, 2021 08.
Article in English | MEDLINE | ID: mdl-33960430

ABSTRACT

The Pseudomonas syringae type III secretion system translocates effector proteins into the host cell cytosol to suppress plant basal immunity. Effector HopZ1a suppresses local and systemic immunity triggered by pathogen-associated molecular patterns (PAMPs) and effectors, through target acetylation. HopZ1a has been shown to target several plant proteins, but none fully substantiates HopZ1a-associated immune suppression. Here, we investigate Arabidopsis thaliana mitogen-activated protein kinase kinases (MKKs) as potential targets, focusing on AtMKK7, a positive regulator of local and systemic immunity. We analyse HopZ1a interference with AtMKK7 by translocation of HopZ1a from bacteria inoculated into Arabidopsis expressing MKK7 from an inducible promoter. Reciprocal phenotypes are analysed on plants expressing a construct quenching MKK7 native expression. We analyse HopZ1a-MKK7 interaction by three independent methods, and the relevance of acetylation by in vitro kinase and in planta functional assays. We demonstrate the AtMKK7 contribution to immune signalling showing MKK7-dependent flg22-induced reactive oxygen species (ROS) burst, MAP kinas (MAPK) activation and callose deposition, plus AvrRpt2-triggered MKK7-dependent signalling. Furthermore, we demonstrate HopZ1a suppression of all MKK7-dependent responses, HopZ1a-MKK7 interaction in planta and HopZ1a acetylation of MKK7 with a lysine required for full kinase activity. We demonstrate that HopZ1a targets AtMKK7 to suppress local and systemic plant immunity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Bacterial Proteins , Plant Diseases/microbiology , Plant Immunity , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Pseudomonas syringae
6.
Plant Methods ; 16: 41, 2020.
Article in English | MEDLINE | ID: mdl-32206081

ABSTRACT

BACKGROUND: Small RNAs are sequence-dependent negative regulators of gene expression involved in many relevant plant processes such as development, genome stability, or stress response. Functional characterization of sRNAs in plants typically relies on the modification of the steady state levels of these molecules. State-of-the-art strategies to reduce plant sRNA levels include molecular tools such as Target Mimics (MIMs or TMs), Short Tandem Target Mimic (STTMs), or molecular SPONGES (SPs). Construction of these tools routinely involve many different molecular biology techniques, steps, and reagents rendering such processes expensive, time consuming, and difficult to implement, particularly high-throughput approaches. RESULTS: We have developed a vector and a cloning strategy that significantly reduces the number of steps required for the generation of MIMs against any given small RNA (sRNA). Our pGREEN-based binary expression vector (pGREEN-DLM100) contains the IPS1 gene from A. thaliana bisected by a ccdB cassette that is itself flanked by restriction sites for a type IIS endonuclease. Using a single digestion plus a sticky-end ligation step, the ccdB cassette that functions as a negative (counter) selection system is replaced by a pair of 28 nt self-annealing primers that provide specificity against the selected target miRNA/siRNA. The method considerably reduces the number of steps and the time required to generate the construct, minimizes the errors derived from long-range PCRs, bypasses bottlenecks derived from subcloning steps, and eliminates the need for any additional cloning technics and reagents, overall saving time and reagents. CONCLUSIONS: Our streamlined system guarantees a low cost, fast and efficient cloning process that it can be easily implemented into high-throughput strategies, since the same digested plasmid can be used for any given sRNA. We believe this method represents a significant technical improvement on state-of-the-art methods to facilitate the characterization of functional aspects of sRNA biology.

7.
Methods Mol Biol ; 1734: 183-199, 2018.
Article in English | MEDLINE | ID: mdl-29288455

ABSTRACT

The last decade has seen significant effort directed toward the role of phenotypic heterogeneity in bacterial adaptation. Phenotypic heterogeneity usually refers to phenotypic diversity that takes place through nongenetic means, independently of environmental induced variation. Recent findings are changing how microbiologists analyze bacterial behavior, with a shift from traditional assays averaging large populations to single-cell analysis focusing on bacterial individual behavior. Fluorescence-based methods are often used to analyze single-cell gene expression by flow cytometry, fluorescence microscopy and/or microfluidics. Moreover, fluorescence reporters can also be used to establish where and when are the genes of interest expressed. In this chapter, we use the model bacterial plant pathogen Pseudomonas syringae to illustrate a method to generate chromosome-located transcriptional gene fusions to fluorescent reporter genes, without affecting the function of the gene of interest.


Subject(s)
Chromosomes, Bacterial , Gene Expression Regulation, Bacterial , Genes, Reporter , Pseudomonas syringae/genetics , Recombinant Fusion Proteins/genetics , Single-Cell Analysis , Alleles , Cloning, Molecular , Flow Cytometry , Microscopy, Fluorescence , Plasmids/genetics , Pseudomonas syringae/metabolism , Single-Cell Analysis/methods
8.
Environ Microbiol ; 18(10): 3593-3605, 2016 10.
Article in English | MEDLINE | ID: mdl-27516206

ABSTRACT

Bacterial microcolonies with heterogeneous sizes are formed during colonization of Phaseolus vulgaris by Pseudomonas syringae. Heterogeneous expression of structural and regulatory components of the P. syringae type III secretion system (T3SS), essential for colonization of the host apoplast and disease development, is likewise detected within the plant apoplast. T3SS expression is bistable in the homogeneous environment of nutrient-limited T3SS-inducing medium, suggesting that subpopulation formation is not a response to different environmental cues. T3SS bistability is reversible, indicating a non-genetic origin, and the T3SSHIGH and T3SSLOW subpopulations show differences in virulence. T3SS bistability requires the transcriptional activator HrpL, the double negative regulatory loop established by HrpV and HrpG, and may be enhanced through a positive feedback loop involving HrpA, the main component of the T3SS pilus. To our knowledge, this is the first example of phenotypic heterogeneity in the expression of virulence determinants during colonization of a non-mammalian host.


Subject(s)
Phaseolus/microbiology , Plant Diseases/microbiology , Pseudomonas syringae/growth & development , Spores, Bacterial/growth & development , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Fimbriae, Bacterial/genetics , Fimbriae, Bacterial/metabolism , Gene Expression Regulation, Bacterial , Phenotype , Pseudomonas syringae/genetics , Pseudomonas syringae/pathogenicity , Spores, Bacterial/genetics , Spores, Bacterial/metabolism , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...