Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 13: 889672, 2022.
Article in English | MEDLINE | ID: mdl-35957690

ABSTRACT

Population connectivity studies are a useful tool for species management and conservation planning, particular of highly threatened or endangered species. Here, we evaluated the genetic structure and connectivity pattern of the endangered coral Cladocora caespitosa across its entire distribution range in the Mediterranean Sea. Additionally, we examined the relative importance of sexual and asexual reproduction in the studied populations and their genetic diversity. A total of 541 individuals from 20 localities were sampled and analysed with 19 polymorphic microsatellite markers. Of the genotyped individuals, 482 (89%) had unique multilocus genotypes. Clonality percentages of the populations varied from 0% (in eight populations) to nearly 69% (in one population from Crete). A heterozygosity deficit and a high degree of inbreeding was the general trend in our data set. Population differentiation in C. caespitosa was characterised by significant pairwise F ST values with lower ones observed at an intraregional scale and higher ones, between populations from different biogeographic regions. Genetic structure analyses showed that the populations are divided according to the three main sub-basins of the Mediterranean Sea: the Western (Balearic, Ligurian and Tyrrhenian seas), the Central (Adriatic and Ionian seas) and the Eastern (Levantine and Aegean seas), coinciding with previously described gene flow barriers. However, the three easternmost populations were also clearly separated from one another, and a substructure was observed for the other studied areas. An isolation-by-distance pattern was found among, but not within, the three main population groups. This substructure is mediated mainly by dispersal along the coastline and some resistance to larval movement through the open sea. Despite the low dispersal ability and high self-recruitment rate of C. caespitosa, casual dispersive events between regions seem to be enough to maintain the species' considerable genetic diversity. Understanding the population connectivity and structure of this endangered scleractinian coral allows for more informed conservation decision making.

2.
Mol Ecol ; 30(19): 4608-4629, 2021 10.
Article in English | MEDLINE | ID: mdl-34260775

ABSTRACT

Oceanographic features such as currents, waves, temperature and salinity, together with life history traits, control patterns and rates of gene flow and contribute to shaping the population genetic structure of marine organisms. Seascape genetics is an emerging discipline that adopts a spatially explicit approach to examine biotic and abiotic factors that drive gene flow in marine environments. In this study, we examined factors that contribute to genetic differentiation in two coastal Mediterranean gastropods whose geographical ranges overlap but which inhabit different environments. The two species differ in several life history traits and in their dispersal capabilities. Genetic differentiation was relatively low for the trochid species Gibbula divaricata (FST  =0.059), and high for the vermetid species Dendropoma lebeche (FST  =0.410). Salinity emerged as the most important variable explaining the genetic structure of both species; sea surface temperature was also important for G. divaricata. For the more sessile D. lebeche, the coastline was predicted to provide important pathways for stepping-stone connectivity and gene flow. Our results provide a greater understanding of the factors influencing marine population connectivity, which may be useful to guide marine conservation and management in the Mediterranean.


Subject(s)
Gastropoda , Gene Flow , Animals , Gastropoda/genetics , Genetic Variation , Genetics, Population , Mediterranean Sea , Oceanography
3.
Coral Reefs ; 40(2): 663-677, 2021.
Article in English | MEDLINE | ID: mdl-33437112

ABSTRACT

We analysed the patterns of genetic variability of eastern Mediterranean populations of the scleractinian coral Cladocora caespitosa, from the Aegean and Levantine seas, using 19 polymorphic microsatellite loci, 11 of which were newly characterized. The observed genetic pattern reflects a scenario of isolation by environment: F ST comparisons showed a higher degree of genetic differentiation between the two Cypriot populations that are separated by only 11 km than between these two Levantine populations and the Aegean population in Greece, which are separated by 1300 km. We hypothesize that local-scale oceanographic factors influenced the dispersal of planulae between the geographically close populations, playing a crucial role in the genetic structure of this coastal coral. Yet, despite being characterized as a species with limited dispersal and high self-recruitment, large-scale migration does eventually occur as first-generation migrants were identified between the most distant populations. In line with previous findings of reproductive plasticity in C. caespitosa, we also found localized differences in reproduction mode (sexual vs. asexual) within a geographically limited context. Several individuals were identified as clones, indicating the predominance of asexual reproduction in one of the Cypriot populations. We interpret this predominance either as a direct response to or as an indirect consequence of perturbations suffered by this C. caespitosa population. These perturbations are caused by unfavourable environmental conditions that threatened local survival, in particular water temperature changes and windstorm swells. Asexual reproduction may be a mechanism used by C. caespitosa to counteract mortality events and recolonize devastated areas, and likely accounts for the occasional high levels of clonality and low levels of genetic diversity. Local adaptations such as these should therefore be considered in conservation and management strategies to maintain and preserve the gene pool of this endangered species. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (10.1007/s00338-020-02040-3).

4.
Front Genet ; 10: 177, 2019.
Article in English | MEDLINE | ID: mdl-30906312

ABSTRACT

Genetic connectivity studies are essential to understand species diversity and genetic structure and to assess the role of potential factors affecting connectivity, thus enabling sound management and conservation strategies. Here, we analyzed the patterns of genetic variability in the marine snail Gibbula divaricata from five coastal locations in the central-south Adriatic Sea (central Mediterranean) and one in the adjacent northern Ionian Sea, using 21 described polymorphic microsatellite loci. Observed and expected heterozygosity varied from 0.582 to 0.635 and 0.684 to 0.780, respectively. AMOVA analyses showed that 97% of genetic variation was observed within populations. Nevertheless, significant, although small, genetic differentiation was found among nearly all of the pairwise F ST comparisons. Over a general pattern of panmixia, three groups of populations were identified: eastern Adriatic populations, western Adriatic populations, and a third group represented by the single northern Ionian Sea population. Nonetheless, migration and gene flow were significant between these groups. Gibbula divaricata is thought to have a limited dispersal capacity related to its lecithotrophic trochophore larval stage. Our results indicated high levels of self-recruitment and gene flow that is mainly driven through coastline dispersion, with populations separated by the lack of suitable habitats or deep waters. This stepping-stone mode of dispersion together with the high levels of self-recruitment could lead to higher levels of population structuring and differentiation along the Adriatic Sea. Large effective population sizes and episodic events of long-distance dispersal might be responsible for the weak differentiation observed in the analyzed populations. In summary, the circulation system operating in this region creates natural barriers for dispersion that, together with life-history traits and habitat requirements, certainly affect connectivity in G. divaricata. However, this scenario of potential differentiation seems to be overridden by sporadic events of long-distance dispersal across barriers and large effective population sizes.

5.
Mol Biol Rep ; 45(6): 2775-2781, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30187310

ABSTRACT

Dendropoma petraeum, considered the primary vermetid reef-building species in the Mediterranean, has recently been shown to be a species complex of at least four cryptic species. These species have highly restricted, non-overlapping distributions, causing concern for their conservation status. To better study the genetic diversity of these populations, we selected one of these species, Dendropoma lebeche (Templado et al. in Mediterr Mar Sci 17(1):13-31, 2016), which is restricted to the western Mediterranean, for microsatellite marker development using Illumina MiSeq. We provide an initial survey of 29 polymorphic microsatellite loci for D. lebeche. Genetic analyses identified 2-11 alleles per locus across the 30 samples examined. Observed and expected heterozygosities ranged from 0.067 to 0.800 and 0.064 to 0.770, respectively. None of the loci deviated from Hardy-Weinberg equilibrium or showed signs of being under selective pressure. Significant linkage disequilibrium was found between two loci. We also show the cross-species amplification of these microsatellite markers in the other three species of the complex, the Tyrrhenian-Sicilian lineage, D. cristatum (Biondi, 1859), the Levantine lineage, D. anguliferum (Monterosato, 1878) and Dendropoma sp. found along the Ionian-Aegean coasts, suggesting their potential utility for future phylogenetic and evolutionary studies.


Subject(s)
Microsatellite Repeats/genetics , Snails/genetics , Animals , Endangered Species , Gastropoda/genetics , Genetic Loci/genetics , Genetics, Population/methods , High-Throughput Nucleotide Sequencing/methods , Linkage Disequilibrium , Mediterranean Sea , Phylogeny , Polymorphism, Genetic/genetics
6.
PeerJ ; 4: e1789, 2016.
Article in English | MEDLINE | ID: mdl-27042392

ABSTRACT

In the present study we used the high-throughput sequencing technology Illumina MiSeq to develop 26 polymorphic microsatellite loci for the marine snail Gibbula divaricata. Four to 32 alleles were detected per locus across 30 samples analyzed. Observed and expected heterozygosities ranged from 0.130 to 0.933 and from 0.294 to 0.956, respectively. No significant linkage disequilibrium existed. Seven loci deviated from Hardy-Weinberg equilibrium that could not totally be explained by the presence of null alleles. Sympatric distribution with other species of the genus Gibbula, as G. rarilineata and G. varia, lead us to test the cross utility of the developed markers in these two species, which could be useful to test common biogeographic patterns or potential hybridization phenomena, since morphological intermediate specimens were found.

7.
Mol Ecol Resour ; 13(1): 158-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23176377

ABSTRACT

This article documents the addition of 83 microsatellite marker loci and 96 pairs of single-nucleotide polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Bembidion lampros, Inimicus japonicus, Lymnaea stagnalis, Panopea abbreviata, Pentadesma butyracea, Sycoscapter hirticola and Thanatephorus cucumeris (anamorph: Rhizoctonia solani). These loci were cross-tested on the following species: Pentadesma grandifolia and Pentadesma reyndersii. This article also documents the addition of 96 sequencing primer pairs and 88 allele-specific primers or probes for Plutella xylostella.


Subject(s)
DNA Primers/genetics , Databases, Genetic , Microsatellite Repeats/genetics , Polymorphism, Single Nucleotide/genetics , Animals , Base Sequence , Ecology/methods , Molecular Biology/methods , Molecular Sequence Data , Sequence Analysis, DNA , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...