Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 9): 1665-76, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23999290

ABSTRACT

The comparatively small number of members of the family of adhesion/growth-regulatory galectins in chicken predestines this system as an attractive model to study the divergence of these lectins after gene duplication. Expression profiling of the three homodimeric (prototype) chicken galectins (CG-1A, CG-1B and CG-2) has raised evidence of distinct functionalities, explaining the interest in a detailed crystallographic analysis of CG-2. As revealed here, marked differences are found in the ligand-binding site and in the contact pattern within the homodimer interface, underlying a characteristic orientation of the two subunits. Notably, a distinctive trimer of dimers that is unique in all galectin crystal structures reported to date forms the core unit of the crystallographic assembly. Combination with spectroscopic and thermodynamic measurements, and comparisons with CG-1A and CG-1B, identify differential changes in the circular-dichroism spectra in the presence of lactose, reflecting the far-reaching impact of the ligand on hydrodynamic behaviour, and inter-galectin differences in both the entropy and the enthalpy of binding. This structural information is a salient step to complete the analysis of the full set of galectins from this model organism.


Subject(s)
Galectin 2/chemistry , Galectins/chemistry , Animals , Chickens , Crystallography, X-Ray , Galectin 1/chemistry , Galectin 2/metabolism , Galectins/metabolism , Humans , Ligands , Models, Chemical , Protein Binding , Protein Multimerization , Sequence Alignment , Structure-Activity Relationship
2.
Glycobiology ; 23(5): 508-23, 2013 May.
Article in English | MEDLINE | ID: mdl-23376190

ABSTRACT

The product of p53-induced gene 1 is a member of the galectin family, i.e., galectin-7 (Gal-7). To move beyond structural data by X-ray diffraction, we initiated the study of the lectin by nuclear magnetic resonance (NMR) and circular dichroism spectroscopies, and molecular dynamics (MD) simulations. In concert, our results indicate that lactose binding to human Gal-7 induces long-range effects (minor conformational shifts and changes in structural dynamics) throughout the protein that result in stabilization of the dimer state, with evidence for positive cooperativity. Monte Carlo fits of (15)N-Gal-7 HSQC titrations with lactose using a two-site model yield K1 = 0.9 ± 0.6 × 10(3) M(-1) and K2 = 3.4 ± 0.8 × 10(3) M(-1). Ligand binding-induced stabilization of the Gal-7 dimer was supported by several lines of evidence: MD-based calculations of interaction energies between ligand-loaded and ligand-free states, gel filtration data and hetero-FRET spectroscopy that indicate a highly reduced tendency for dimer dissociation in the presence of lactose, CD-based thermal denaturation showing that the transition temperature of the lectin is significantly increased in the presence of lactose, and saturation transfer difference (STD) NMR using a molecular probe of the monomer state whose presence is diminished in the presence of lactose. MD simulations with the half-loaded ligand-bound state also provided insight into how allosteric signaling may occur. Overall, our results reveal long-range effects on Gal-7 structure and dynamics, which factor into entropic contributions to ligand binding and allow further comparisons with other members of the galectin family.


Subject(s)
Galectins/metabolism , Lactose/metabolism , Allosteric Regulation , Amino Acid Sequence , Galectins/chemistry , Humans , Molecular Dynamics Simulation , Molecular Sequence Data , Protein Binding , Protein Denaturation , Protein Multimerization , Protein Stability
3.
Anat Rec (Hoboken) ; 294(3): 427-44, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21290613

ABSTRACT

Characterization of all members of a gene family established by gene divergence is essential to delineate distinct or overlapping expression profiles and functionalities. Their activity as potent modulators of diverse physiological processes directs interest to galectins (endogenous lectins with ß-sandwich fold binding ß-galactosides and peptide motifs), warranting their study with the long-term aim of a comprehensive analysis. The comparatively low level of complexity of the galectin network in chicken with five members explains the choice of this organism as model. Previously, the three proto-type chicken galectins CG-1A, CG-1B, and CG-2 as well as the tandem-repeat-type CG-8 had been analyzed. Our study fills the remaining gap to determine gene structure, protein characteristics and expression profile of the fifth protein, that is, chimera-type chicken galectin-3 (CG-3). Its gene has a unique potential to generate variants: mRNA production stems from two promoters, alternative splicing of the form from the second transcription start point (tsp) can generate three mRNAs. The protein with functional phosphorylation sites in the N-terminus generated by transcription from the first tsp (tsp1CG-3) is the predominant CG-3 type present in adult tissues. Binding assays with neoglycoproteins and cultured cells disclose marked similarity to properties of human galectin-3. The expression and localization profiles as well as proximal promoter regions have characteristic features distinct from the other four CGs. This information on CG-3 completes the description of the panel of CGs, hereby setting the stage for detailed comparative analysis of the entire CG family, e.g., in embryogenesis.


Subject(s)
Alternative Splicing , Chickens/genetics , Galectin 3/genetics , Gene Expression Profiling , Promoter Regions, Genetic/genetics , Amino Acid Sequence , Animals , Blotting, Western , Cloning, Molecular , Galectin 3/classification , Glycoproteins/metabolism , Humans , Immunoenzyme Techniques , Molecular Sequence Data , Phosphorylation , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction
4.
Int J Biochem Cell Biol ; 42(6): 1019-29, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20227520

ABSTRACT

Human tandem-repeat-type galectin-9 is a potent adhesion/growth-regulatory effector via lectin capacity of its N- and C-terminal domains. This bioactivity prompted further crystallographic study of the N-domain, combined with analysis in solution. Binding of lactose markedly increased the N-domain's resistance to thermal denaturation. Crystallography revealed its intimate contact profile, besides detecting an extension of the beta-sandwich fold by an antiparallel beta-strand F0 aligned to the C-terminal F1 strand. Ligand accommodation in its low-energy conformation leads to a movement of Arg87's side chain. As consequence, the ligand's glucose moiety and Arg87 become hydrogen bonded. The resulting predictions for spatial parameters in solution were verified by determining (a) the pattern of magnetization transfer from the protein to protons of lactose and Forssman disaccharide by NMR spectroscopy and (b) the ellipticity changes at wavelengths characteristic for Trp/Tyr residues in near-UV CD spectroscopy. Whereas solid-phase assays confirmed a previously noted tendency for homo- and heterotypic aggregation, gel filtration and ultracentrifugation disclosed monomeric status in solution, in line with crystallographic data. Using cell mutants with defects in glycosylation, this lectin domain was shown to preferentially bind N-glycans without alpha2,3-sialylation. Since proximal promoter sequences were delineated to diverge markedly among galectin genes and resulting differences in expression profiles were exemplarily documented immunohistochemically, the intrafamily diversification appears to have assigned this protein to a characteristic expression and activity profile among galectins. Our data thus take the crystallographic information to the level of the lectin in solution and in tissues by a strategic combination of spectroscopic and cell/histochemical assays.


Subject(s)
Galectins/metabolism , Lactose/metabolism , Protein Conformation , Animals , CHO Cells , Cell Adhesion , Cell Growth Processes , Cricetinae , Cricetulus , Crystallization , Crystallography, X-Ray , Galectins/chemistry , Glycosylation , Humans , Lactose/chemistry , Ligands , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Stability
SELECTION OF CITATIONS
SEARCH DETAIL
...