Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cytotechnology ; 68(4): 1287-300, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26091615

ABSTRACT

Despite their practical and commercial relevance, there are few reports on the kinetics of growth and production of Chinese hamster ovary (CHO) cells-the most frequently used host for the industrial production of therapeutic proteins. We characterize the kinetics of cell growth, substrate consumption, and product formation in naive and monoclonal antibody (mAb) producing recombinant CHO cells. Culture experiments were performed in 125 mL shake flasks on commercial culture medium (CD Opti CHO™ Invitrogen, Carlsbad, CA, USA) diluted to different glucose concentrations (1.2-4.8 g/L). The time evolution of cell, glucose, lactic acid concentration and monoclonal antibody concentrations was monitored on a daily basis for mAb-producing cultures and their naive counterparts. The time series were differentiated to calculate the corresponding kinetic rates (rx = d[X]/dt; rs = d[S]/dt; rp = d[mAb]/dt). Results showed that these cell lines could be modeled by Monod-like kinetics if a threshold substrate concentration value of [S]t = 0.58 g/L (for recombinant cells) and [S]t = 0.96 g/L (for naïve cells), below which growth is not observed, was considered. A set of values for µmax, and Ks was determined for naive and recombinant cell cultures cultured at 33 and 37 °C. The yield coefficient (Yx/s) was observed to be a function of substrate concentration, with values in the range of 0.27-1.08 × 10(7) cell/mL and 0.72-2.79 × 10(6) cells/mL for naive and recombinant cultures, respectively. The kinetics of mAb production can be described by a Luedeking-Piret model (d[mAb]/dt = αd[X]/dt + ß[X]) with values of α = 7.65 × 10(-7) µg/cell and ß = 7.68 × 10(-8) µg/cell/h for cultures conducted in batch-agitated flasks and batch and instrumented bioreactors operated in batch and fed-batch mode.

2.
Lab Chip ; 14(7): 1320-9, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24519447

ABSTRACT

We used continuous flow micro-devices as bioreactors for the production of a glycosylated pharmaceutical product (a monoclonal antibody). We cultured CHO cells on the surface of PMMA/PDMS micro-channels that had been textured by micromachining and coated with fibronectin. Three different micro-channel geometries (a wavy channel, a zigzag channel, and a series of donut-shape reservoirs) were tested in a continuous flow regime in the range of 3 to 6 µL min(-1). Both the geometry of the micro-device and the flow rate had a significant effect on cell adhesion, cell proliferation, and monoclonal antibody production. The most efficient configuration was a series of donut-shaped reservoirs, which yielded mAb concentrations of 7.2 mg L(-1) at residence times lower than one minute and steady-state productivities above 9 mg mL(-1) min(-1). These rates are at about 3 orders of magnitude higher than those observed in suspended-cell stirred tank fed-batch bioreactors.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Bioreactors , Cell Proliferation , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Recombinant Proteins/biosynthesis , Animals , CHO Cells , Cell Adhesion , Cricetinae , Cricetulus
3.
Lab Chip ; 13(7): 1243-6, 2013 Apr 07.
Article in English | MEDLINE | ID: mdl-23412111

ABSTRACT

We report a proof-of-principle for the use of micro-devices as continuous bioreactors for the production of monoclonal antibodies. We culture CHO cells on the surface of PMMA "zigzag" channels textured with semi-spherical cavities coated with fibronectin, observing steady-state productivities 100 times higher than those observed in full scale systems.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Lab-On-A-Chip Devices , Polymethyl Methacrylate/chemistry , Animals , CHO Cells , Cricetinae , Cricetulus
SELECTION OF CITATIONS
SEARCH DETAIL
...