Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pathogens ; 12(9)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37764952

ABSTRACT

We analyzed the antimicrobial resistance (AMR) data of 6519 clinical isolates of Escherichia coli (n = 3985), Klebsiella pneumoniae (n = 775), Acinetobacter baumannii (n = 163), Pseudomonas aeruginosa (n = 781), Enterococcus faecium (n = 124), and Staphylococcus aureus (n = 691) from 43 centers in Mexico. AMR assays were performed using commercial microdilution systems (37/43) and the disk diffusion susceptibility method (6/43). The presence of carbapenemase-encoding genes was assessed using PCR. Data from centers regarding site of care, patient age, and clinical specimen were collected. According to the site of care, the highest AMR was observed in E. coli, K. pneumoniae, and P. aeruginosa isolates from ICU patients. In contrast, in A. baumannii, higher AMR was observed in isolates from hospitalized non-ICU patients. According to age group, the highest AMR was observed in the ≥60 years age group for E. coli, E. faecium, and S. aureus, and in the 19-59 years age group for A. baumannii and P. aeruginosa. According to clinical specimen type, a higher AMR was observed in E. coli, K. pneumoniae, and P. aeruginosa isolates from blood specimens. The most frequently detected carbapenemase-encoding gene in E. coli was blaNDM (84%).

2.
J Glob Antimicrob Resist ; 33: 61-71, 2023 06.
Article in English | MEDLINE | ID: mdl-36878463

ABSTRACT

OBJECTIVES: To determine genomic characteristics and molecular epidemiology of carbapenem non-susceptible Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa from medical centres of Mexico using whole genome sequencing data analysed with the EPISEQⓇ CS application and other bioinformatic platforms. METHODS: Clinical isolates collected from 28 centres in Mexico included carbapenem-non-susceptible K. pneumoniae (n = 22), E. coli (n = 24), A. baumannii (n = 16), and P. aeruginosa (n = 13). Isolates were subjected to whole genome sequencing using the Illumina (MiSeq) platform. FASTQ files were uploaded to the EPISEQⓇ CS application for analysis. Additionally, the tools Kleborate v2.0.4 and Pathogenwatch were used as comparators for Klebsiella genomes, and the bacterial whole genome sequence typing database was used for E. coli and A. baumannii. RESULTS: For K. pneumoniae, both bioinformatic approaches detected multiple genes encoding aminoglycoside, quinolone, and phenicol resistance, and the presence of blaNDM-1 explained carbapenem non-susceptibility in 18 strains and blaKPC-3 in four strains. Regarding E. coli, both EPISEQⓇ CS and bacterial whole genome sequence typing database analyses detected multiple virulence and resistance genes: 20 of 24 (83.3%) strains carried blaNDM, 3 of 24 (12.4%) carried blaOXA-232, and 1 carried blaOXA-181. Genes that confer resistance to aminoglycosides, tetracyclines, sulfonamides, phenicols, trimethoprim, and macrolides were also detected by both platforms. Regarding A. baumannii, the most frequent carbapenemase-encoding gene detected by both platforms was blaOXA-72, followed by blaOXA-66. Both approaches detected similar genes for aminoglycosides, carbapenems, tetracyclines, phenicols, and sulfonamides. Regarding P. aeruginosa, blaVIM, blaIMP, and blaGES were the more frequently detected. Multiple virulence genes were detected in all strains. CONCLUSION: Compared to the other available platforms, EPISEQⓇ CS enabled a comprehensive resistance and virulence analysis, providing a reliable method for bacterial strain typing and characterization of the virulome and resistome.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Escherichia coli/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Gram-Negative Bacteria , Carbapenems , Klebsiella pneumoniae , Aminoglycosides , Pseudomonas aeruginosa/genetics , Computational Biology
3.
Microb Drug Resist ; 28(3): 338-345, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34870473

ABSTRACT

Aim: This study aims to assess the changes in antimicrobial resistance among some critical and high-priority microorganisms collected previously and during the coronavirus disease 2019 (COVID-19) pandemic in Mexico. Methods: We collected antimicrobial susceptibility data for critical and high-priority microorganisms from blood, urine, respiratory samples, and from all specimens, in which the pathogen may be considered a causative agent. Data were stratified and compared for two periods: 2019 versus 2020 and second semester 2019 (prepandemic) versus the second semester 2020 (pandemic). Results: In the analysis of second semester 2019 versus the second semester 2020, in blood samples, increased resistance to oxacillin (15.2% vs. 36.9%), erythromycin (25.7% vs. 42.8%), and clindamycin (24.8% vs. 43.3%) (p ≤ 0.01) was detected for Staphylococcus aureus, to imipenem (13% vs. 23.4%) and meropenem (11.2% vs. 21.4) (p ≤ 0.01), for Klebsiella pneumoniae. In all specimens, increased ampicillin and tetracycline resistance was detected for Enterococcus faecium (p ≤ 0.01). In cefepime, meropenem, levofloxacin, and gentamicin (p ≤ 0.01), resistance was detected for Escherichia coli; and in piperacillin-tazobactam, cefepime, imipenem, meropenem, ciprofloxacin, levofloxacin, and gentamicin (p ≤ 0.01), resistance was detected for Pseudomonas aeruginosa. Conclusion: Antimicrobial resistance increased in Mexico during the COVID-19 pandemic. The increase in oxacillin resistance for S. aureus and carbapenem resistance for K. pneumoniae recovered from blood specimens deserves special attention. In addition, an increase in erythromycin resistance in S. aureus was detected, which may be associated with high azithromycin use. In general, for Acinetobacter baumannii and P. aeruginosa, increasing resistance rates were detected.


Subject(s)
Bacterial Infections/epidemiology , Bacterial Infections/microbiology , COVID-19/epidemiology , Drug Resistance, Multiple, Bacterial , Humans , Mexico/epidemiology , Microbial Sensitivity Tests , Pandemics , SARS-CoV-2
4.
PLoS One ; 16(3): e0248614, 2021.
Article in English | MEDLINE | ID: mdl-33730101

ABSTRACT

AIM: This report presents phenotypic and genetic data on the prevalence and characteristics of extended-spectrum ß-lactamases (ESBLs) and representative carbapenemases-producing Gram-negative species in Mexico. MATERIAL AND METHODS: A total of 52 centers participated, 43 hospital-based laboratories and 9 external laboratories. The distribution of antimicrobial resistance data for Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae complex, Acinetobacter baumannii complex, and Pseudomonas aeruginosa in selected clinical specimens from January 1 to March 31, 2020 was analyzed using the WHONET 5.6 platform. The following clinical isolates recovered from selected specimens were included: carbapenem-resistant Enterobacteriaceae, ESBL or carbapenem-resistant E. coli, and K. pneumoniae, carbapenem-resistant A. baumannii complex, and P. aeruginosa. Strains were genotyped to detect ESBL and/or carbapenemase-encoding genes. RESULTS: Among blood isolates, A. baumannii complex showed more than 68% resistance for all antibiotics tested, and among Enterobacteria, E. cloacae complex showed higher resistance to carbapenems. A. baumannii complex showed a higher resistance pattern for respiratory specimens, with only amikacin having a resistance lower than 70%. Among K. pneumoniae isolates, blaTEM, blaSHV, and blaCTX were detected in 68.79%, 72.3%, and 91.9% of isolates, respectively. Among E. coli isolates, blaTEM, blaSHV, and blaCTX were detected in 20.8%, 4.53%, and 85.7% isolates, respectively. For both species, the most frequent genotype was blaCTX-M-15. Among Enterobacteriaceae, the most frequently detected carbapenemase-encoding gene was blaNDM-1 (81.5%), followed by blaOXA-232 (14.8%) and blaoxa-181(7.4%), in A. baumannii was blaOXA-24 (76%) and in P. aeruginosa, was blaIMP (25.3%), followed by blaGES and blaVIM (13.1% each). CONCLUSION: Our study reports that NDM-1 is the most frequent carbapenemase-encoding gene in Mexico in Enterobacteriaceae with the circulation of the oxacillinase genes 181 and 232. KPC, in contrast to other countries in Latin America and the USA, is a rare occurrence. Additionally, a high circulation of ESBL blaCTX-M-15 exists in both E. coli and K. pneumoniae.


Subject(s)
Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Negative Bacterial Infections/drug therapy , beta-Lactam Resistance/genetics , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , Carbapenems/therapeutic use , Genes, Bacterial , Genotype , Gram-Negative Bacteria/enzymology , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/isolation & purification , Gram-Negative Bacterial Infections/diagnosis , Gram-Negative Bacterial Infections/epidemiology , Gram-Negative Bacterial Infections/microbiology , Humans , Mexico/epidemiology , Microbial Sensitivity Tests , Phenotype , beta-Lactamases/genetics
5.
Microb Drug Resist ; 26(11): 1372-1382, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32027229

ABSTRACT

Background: Surveillance of antimicrobial resistance (AMR) requires an international approach with national and local strategies. Our aim was to summarize a retrospective 10-year report of antibiotic resistance of gram-positive and gram-negative bacteria in Mexico. Methods: A total of 46 centers from 22 states of Mexico participated. Databases of AMR from January 2009 to December 2018 were included for most species. The 10-year period was divided into five 2-year periods. Results: For Staphylococcus aureus, a decrease in resistance in all specimens was observed for erythromycin and oxacillin (p < 0.0001 for each). For Enterobacter spp., resistance to meropenem increased for urine specimens (p = 0.0042). For Klebsiella spp., increased drug resistance in specimens collected from blood was observed for trimethoprim/sulfamethoxazole, gentamicin, tobramycin (p < 0.0001 for each), meropenem (p = 0.0014), and aztreonam (p = 0.0030). For Acinetobacter baumannii complex, high drug resistance was detected for almost all antibiotics, including carbapenems, except for tobramycin, which showed decreased resistance for urine, respiratory, and blood isolates (p < 0.0001 for each), and for amikacin, which showed a decrease in resistance in urine specimens (p = 0.0002). An increase in resistance to cefepime was found for urine, respiratory, and blood specimens (p < 0.0001 for each). For Pseudomonas aeruginosa, aztreonam resistance increased for isolates recovered from blood (p = 0.0001). Conclusion: This laboratory-based surveillance of antibiotic resistance shows that resistance is increasing for some antibiotics in different bacterial species in Mexico and highlights the need for continuous monitoring of antibiotic resistance.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Drug Resistance, Bacterial/drug effects , Humans , Mexico , Microbial Sensitivity Tests/methods , Retrospective Studies
6.
Int J Phytoremediation ; 16(7-12): 1073-86, 2014.
Article in English | MEDLINE | ID: mdl-24933903

ABSTRACT

In order to gain knowledge on the potential use of Helianthus annuus L. for the remediation of Cr(VI) polluted waters, hydroponics experiments were set up to determine Cr uptake and tolerance in different Cr(VI)-sulfate conditions, and Cr biotransformations. Results indicated that Cr(VI) promoted seed germination, and plant tolerance was higher at younger plant stages. Cr uptake was dependent on sulfate concentrations. The highest Cr levels in roots and shoots (13,700 and 2,500 mg kg(-1) dry weight (DW), respectively) were obtained in 1 mM sulfate. The lowest Cr uptake in roots (10,600 mg kg(-1) DW) was observed in seedlings treated with no sulfate. In shoots, Cr concentration was of 1,500 mg kg(-1)DW for the 1 mM sulfate treatment, indicating a different level of interaction between chromate and sulfate in both tissues. For the first time, using micro X-ray florescence (muXRF), we demonstrated Cr reaches the root stele and is located in the walls of xylem vessels. Bulk and micro X-ray Absorption Near-Edge Structure (muXANES) results showed that Cr in the roots is mostly in the form of Cr(III) phosphate (80%), with the remainder complexed to organic acids. Our results suggest this plant species may serve for Cr(VI) rhizofiltration purposes.


Subject(s)
Chromates/toxicity , Chromium/metabolism , Helianthus/metabolism , Water Pollutants/metabolism , Biodegradation, Environmental , Biological Transport , Chromium/analysis , Chromium/toxicity , Germination/drug effects , Helianthus/drug effects , Helianthus/growth & development , Hydroponics , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Plant Shoots/drug effects , Plant Shoots/growth & development , Plant Shoots/metabolism , Seedlings/drug effects , Seedlings/growth & development , Seedlings/metabolism , Seeds/drug effects , Seeds/growth & development , Seeds/metabolism , Spectrometry, X-Ray Emission , Sulfates/pharmacology , Synchrotrons , Water/chemistry , Water Pollutants/analysis , Water Pollutants/toxicity , Xylem/drug effects , Xylem/growth & development , Xylem/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...