Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Publication year range
3.
J Clin Med ; 9(6)2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32545591

ABSTRACT

The potential role of miRNAs in the silencing mechanisms of pituitary neuroendocrine tumors (PitNETs) has not been addressed. The aim of the present study was to evaluate the expression levels and the potential associated role of some miRNAs, pathways, and transcription factors in the silencing mechanisms of corticotroph tumors (CTs). Accordingly, the expression of miR-375, miR-383, miR-488, miR-200a and miR-103; of PKA, MAP3K8, MEK, MAPK3, NGFIB, NURR1, PITX1, and STAT3 were analyzed via qRT-PCR in 23 silent and 24 functioning CTs. miR-200a and miR-103 showed significantly higher expression in silent than in functioning CTs, even after eliminating the bias of tumor size, therefore enabling the differentiation between the two variants. Additionally, miR-383 correlated negatively with TBX19 in silent CTs, a transcription factor related with the processing of POMC that can participate in the silencing mechanisms of CTs. Finally, the gene expression levels of miR-488, miR-200a, and miR-103 were significantly higher in macroadenomas (functioning and silent) than in microadenomas. The evidence from this study indicates that miRNAs could be involved in the pathophysiology of CTs. The translational implications of these findings suggest that pharmacological treatments specifically targeting these miRNAs could become a promising therapeutic option for these patients.

4.
Diagnostics (Basel) ; 10(4)2020 Apr 16.
Article in English | MEDLINE | ID: mdl-32316225

ABSTRACT

miR-17-5p and E2F1 have been described as deregulated in cancer, but they have scarcely been studied in pituitary neuroendocrine tumours (PitNETs). This study evaluates the relationship of E2F1 and miR-17-5p with the invasiveness and proliferation of PitNETs. In this cross-sectional descriptive study, we evaluated the expression of E2F1, MYC, and miR-17-5p by quantitative real time PCR analysis in 60 PitNETs: 29 gonadotroph (GT), 15 functioning somatotroph (ST), and 16 corticotroph (CT) tumours, of which 8 were silent (sCT). The clinical data were collected from the Spanish Molecular Register of Pituitary Adenomas (REMAH) database. We defined invasiveness according to the Knosp classification and proliferation according to a molecular expression of Ki-67 ≥ 2.59. E2F1 was more expressed in invasive than in non-invasive tumours in the whole series (p = 0.004) and in STs (p = 0.01). In addition, it was overexpressed in the silent subtypes (GTs and sCTs; all macroadenomas) and normoexpressed in the functioning ones (fCTs and STs; some microadenomas). miR-17-5p was more expressed in proliferative than in non-proliferative tumours (p = 0.041) in the whole series but not by subtypes. Conclusions: Our study suggests that in PitNETs, E2F1 could be a good biomarker of invasiveness, and miR-17-5p of proliferation, helping the clinical management of these tumours.

5.
Food Chem ; 213: 90-97, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27451159

ABSTRACT

The most important and negative effect of the global warming for winemakers in warm and sunny regions is the observed lag between industrial and phenolic grape ripeness, so only it is possible to obtain an acceptable colour when the ethanol content of wine is high. By contrast, the actual market trends are to low ethanol content wines. Flor yeast growing a short time under velum conditions, decreases the ethanol and volatile acidity contents, has a favorable effect on the colour and astringency and significantly changes the wine content in 1-propanol, isobutanol, acetaldehyde, 1,1-diethoxiethane and ethyl lactate. The Principal Component Analysis of six enological parameters or five aroma compounds allows to classify the wines subjected to different velum formation conditions. The obtained results in two tasting sessions suggest that the flor yeast helps to modulate the ethanol, astringency and colour and supports a new biotechnological perspective for red winemakers.


Subject(s)
Color , Ethanol/chemistry , Flavoring Agents/analysis , Saccharomyces cerevisiae/growth & development , Smell , Vitis/chemistry , Wine/analysis , Food Handling , Odorants/analysis , Saccharomyces cerevisiae/metabolism , Wine/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...