Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oecologia ; 188(4): 1155-1165, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30361763

ABSTRACT

The Anthropocene is marked by an unprecedented homogenisation of the world's biota, confronting species that never co-occurred during their evolutionary histories. Interactions established in these novel communities may affect ecosystem functioning; however, most research has focused on the impacts of a minority of aggressive invasive species, while changes inflicted by a less conspicuous majority of non-invasive alien species on community structure are still poorly understood. This information is critical to guide conservation strategies, and instrumental to advance ecological theory, particularly to understand how non-native species integrate in recipient communities and affect the interactions of native species. We evaluated how the structure of 50 published pollination networks changes with the proportion of alien plant species and found that network structure is largely unaffected. Although some communities were heavily invaded, the proportion of alien plant species was relatively low (mean = 10%; max. = 38%). We further characterized the pollination network in a botanic garden with a plant community dominated by non-invasive alien species (85%). We show that the structure of this novel community is also not markedly different from native-dominated communities. Plant-pollinator interactions revealed no obvious differences regarding plant origin (native vs. alien) or the native bioregion of the introduced plants. This overall similarity between native and alien plants is likely driven by the contrasting patterns of invasive plants (promoting generalism), and non-invasive aliens, suggested here to promote specialization.


Subject(s)
Ecosystem , Pollination , Animals , Biota , Insecta , Introduced Species , Plants
2.
Front Plant Sci ; 9: 293, 2018.
Article in English | MEDLINE | ID: mdl-29568305

ABSTRACT

Invasion by alien species is a worldwide phenomenon with negative consequences at both natural and production areas. Acacia longifolia is an invasive shrub/small tree well known for its negative ecological impacts in several places around the world. The recent introduction of a biocontrol agent (Trichilogaster acaciaelongifoliae), an Australian bud-galling wasp which decreases flowering of A. longifolia, in Portugal, demands the development of a cost-efficient method to monitor its establishment. We tested how unmanned aerial vehicles (UAV) can be used to map A. longifolia flowering. Our core assumption is as the population of the biocontrol agent increases, its impacts on the reduction of A. longifolia flowering will be increasingly visible. Additionally, we tested if there is a simple linear correlation between the number of flowers of A. longifolia counted in field and the area covered by flowers in the UAV imagery. UAV imagery was acquired over seven coastal areas including frontal dunes, interior sand dunes and pine forests considering two phenological stages: peak and off-peak flowering season. The number of flowers of A. longifolia was counted, in a minimum of 60 1 m2 quadrats per study area. For each study area, flower presence/absence maps were obtained using supervised Random Forest. The correlation between the number of flowers and the area covered by flowering plants could then be tested. The flowering of A. longifolia was mapped using UAV mounted with RGB and CIR Cannon IXUS/ELPH cameras (Overall Accuracy > 0.96; Cohen's Kappa > 0.85) varying according to habitat type and flowering season. The correlation between the number of flowers counted and the area covered by flowering was weak (r2 between 0.0134 and 0.156). This is probably explained, at least partially, by the high variability of A. longifolia in what regards flowering morphology and distribution. The very high accuracy of our approach to map A. longifolia flowering proved to be cost efficient and replicable, showing great potential for detecting the future decrease in flowering promoted by the biocontrol agent. The attempt to provide a low-cost method to estimate A. longifolia flower productivity using UAV failed, but it provided valuable insights on the future steps.

3.
Ecology ; 98(3): 782-793, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27987302

ABSTRACT

Biological invasions are a major threat to biodiversity and as such understanding their impacts is a research priority. Ecological networks provide a valuable tool to explore such impacts at the community level, and can be particularly insightful for planning and monitoring biocontrol programmes, including the potential for their seldom evaluated indirect non-target effects. Acacia longifolia is among the worst invasive species in Portugal, and has been recently targeted for biocontrol by a highly specific gall-wasp. Here we use an ambitious replicated network approach to: (1) identify the mechanisms by which direct and indirect impacts of A. longifolia can cascade from plants to higher trophic levels, including gallers, their parasitoids and inquilines; (2) reveal the structure of the interaction networks between plants, gallers, parasitoids and inquilines before the biocontrol; and (3) explore the potential for indirect interactions among gallers, including those established with the biocontrol agent, via apparent competition. Over a 15-month period, we collected 31,737 galls from native plants and identified all emerging insects, quantifying the interactions between 219 plant-, 49 galler-, 65 parasitoid- and 87 inquiline-species-one of the largest ecological networks to date. No galls were found on any of the 16 alien plant species. Invasion by A. longifolia caused an alarming simplification of plant communities, with cascading effects to higher trophic levels, namely: a decline of overall gall biomass, and on the richness, abundance and biomass of galler insects, their parasitoids, and inquilines. Correspondingly, we detected a significant decline in the richness of interactions between plants and galls. The invasion tended to increase overall interaction evenness by promoting the local extinction of the native plants that sustained more gall species. However, highly idiosyncratic responses hindered the detection of further consistent changes in network topology. Predictions of indirect effects of the biocontrol on native gallers via apparent competition ranged from negligible to highly significant. Such scenarios are incredibly hard to predict, but even if there are risks of indirect effects it is critical to weigh them carefully against the consequences of inaction and invasive species spread.


Subject(s)
Food Chain , Introduced Species , Plants , Animals , Biodiversity , Insecta , Pest Control, Biological , Portugal
SELECTION OF CITATIONS
SEARCH DETAIL
...