Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Plant Cell ; 36(5): 1655-1672, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38242840

ABSTRACT

SUPPRESSOR OF MAX2 (SMAX)1-LIKE (SMXL) proteins are a plant-specific clade of type I HSP100/Clp-ATPases. SMXL genes are present in virtually all land plant genomes. However, they have mainly been studied in angiosperms. In Arabidopsis (Arabidopsis thaliana), 3 functional SMXL subclades have been identified: SMAX1/SMXL2, SMXL345, and SMXL678. Of these, 2 subclades ensure endogenous phytohormone signal transduction. SMAX1/SMXL2 proteins are involved in KAI2 ligand (KL) signaling, while SMXL678 proteins are involved in strigolactone (SL) signaling. Many questions remain regarding the mode of action of these proteins, as well as their ancestral roles. We addressed these questions by investigating the functions of the 4 SMXL genes in the moss Physcomitrium patens. We demonstrate that PpSMXL proteins are involved in the conserved ancestral MAX2-dependent KL signaling pathway and negatively regulate growth. However, PpSMXL proteins expressed in Arabidopsis cannot replace SMAX1 or SMXL2 function in KL signaling, whereas they can functionally replace SMXL4 and SMXL5 and restore root growth. Therefore, the molecular functions of SMXL proteins are conserved, but their interaction networks are not. Moreover, the PpSMXLC/D clade positively regulates SL signal transduction in P. patens. Overall, our data reveal that SMXL proteins in moss mediate crosstalk between the SL and KL signaling pathways.


Subject(s)
Arabidopsis Proteins , Bryopsida , Gene Expression Regulation, Plant , Plant Proteins , Bryopsida/genetics , Bryopsida/growth & development , Bryopsida/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , Signal Transduction , Phylogeny , Lactones/metabolism
2.
New Phytol ; 236(2): 512-524, 2022 10.
Article in English | MEDLINE | ID: mdl-35775827

ABSTRACT

The Arabidopsis Plant HomeoDomain (PHD) proteins AtMS1 and AtMMD1 provide chromatin-mediated transcriptional regulation essential for tapetum-dependent pollen formation. This pollen-based male gametogenesis is a derived trait of seed plants. Male gametogenesis in the common ancestors of land plants is instead likely to have been reminiscent of that in extant bryophytes where flagellated sperms are produced by an elaborate gametophyte generation. Still, also bryophytes possess MS1/MMD1-related PHD proteins. We addressed the function of two MS1/MMD1-homologues in the bryophyte model moss Physcomitrium patens by the generation and analysis of reporter and loss-of-function lines. The two genes are together essential for both male and female fertility by providing functions in the gamete-producing inner cells of antheridia and archegonia. They are furthermore expressed in the diploid sporophyte generation suggesting a function during sporogenesis, a process proposed related by descent to pollen formation in angiosperms. We propose that the moss MS1/MMD1-related regulatory network required for completion of male and female gametogenesis, and possibly for sporogenesis, represent a heritage from ancestral land plants.


Subject(s)
Arabidopsis , Bryopsida , Arabidopsis/genetics , Bryopsida/genetics , Bryopsida/metabolism , Chromatin/metabolism , Distal Myopathies , Gametogenesis , Gene Expression Regulation, Plant , Muscular Atrophy , Plants/genetics
3.
New Phytol ; 235(2): 718-731, 2022 07.
Article in English | MEDLINE | ID: mdl-35037245

ABSTRACT

Clade II basic helix-loop-helix transcription factors (bHLH TFs) are essential for pollen production and tapetal nursing functions in angiosperm anthers. As pollen has been suggested to be related to bryophyte spores by descent, we characterized two Physcomitrium (Physcomitrella) patens clade II bHLH TFs (PpbHLH092 and PpbHLH098), to test if regulation of sporogenous cells and the nursing cells surrounding them is conserved between angiosperm anthers and bryophyte sporangia. We made CRISPR-Cas9 reporter and loss-of-function lines to address the function of PpbHLH092/098. We sectioned and analyzed WT and mutant sporophytes for a comprehensive stage-by-stage comparison of sporangium development. Spore precursors in the P. patens sporangium are surrounded by nursing cells showing striking similarities to tapetal cells in angiosperms. Moss clade II bHLH TFs are essential for the differentiation of these tapetal-like cells and for the production of functional spores. Clade II bHLH TFs provide a conserved role in controlling the sporophytic somatic cells surrounding and nursing the sporogenous cells in both moss sporangia and angiosperm anthers. This supports the hypothesis that such nursing functions in mosses and angiosperms, lineages separated by c. 450 million years, are related by descent.


Subject(s)
Bryopsida , Magnoliopsida , Basic Helix-Loop-Helix Transcription Factors/genetics , Bryopsida/metabolism , Gene Expression Regulation, Plant , Haploidy , Magnoliopsida/genetics , Magnoliopsida/metabolism , Plant Proteins/metabolism , Sporangia/metabolism , Spores, Fungal/metabolism
4.
New Phytol ; 233(6): 2614-2628, 2022 03.
Article in English | MEDLINE | ID: mdl-34942024

ABSTRACT

Although land plant germ cells have received much attention, knowledge about their specification is still limited. We thus identified transcripts enriched in egg cells of the bryophyte model species Physcomitrium patens, compared the results with angiosperm egg cells, and selected important candidate genes for functional analysis. We used laser-assisted microdissection to perform a cell-type-specific transcriptome analysis on egg cells for comparison with available expression profiles of vegetative tissues and male reproductive organs. We made reporter lines and knockout mutants of the two BONOBO (PbBNB) genes and studied their role in reproduction. We observed an overlap in gene activity between bryophyte and angiosperm egg cells, but also clear differences. Strikingly, several processes that are male-germline specific in Arabidopsis are active in the P. patens egg cell. Among those were the moss PbBNB genes, which control proliferation and identity of both female and male germlines. Pathways shared between male and female germlines were most likely present in the common ancestors of land plants, besides sex-specifying factors. A set of genes may also be involved in the switches between the diploid and haploid moss generations. Nonangiosperm gene networks also contribute to the specification of the P. patens egg cell.


Subject(s)
Bryopsida , Germ Cells, Plant , Bryopsida/genetics , Bryopsida/metabolism , Epigenesis, Genetic
5.
Plant Cell ; 33(11): 3487-3512, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34459915

ABSTRACT

In angiosperms, the α/ß hydrolase DWARF14 (D14), along with the F-box protein MORE AXILLARY GROWTH2 (MAX2), perceives strigolactones (SL) to regulate developmental processes. The key SL biosynthetic enzyme CAROTENOID CLEAVAGE DIOXYGENASE8 (CCD8) is present in the moss Physcomitrium patens, and PpCCD8-derived compounds regulate moss extension. The PpMAX2 homolog is not involved in the SL response, but 13 PpKAI2LIKE (PpKAI2L) genes homologous to the D14 ancestral paralog KARRIKIN INSENSITIVE2 (KAI2) encode candidate SL receptors. In Arabidopsis thaliana, AtKAI2 perceives karrikins and the elusive endogenous KAI2-Ligand (KL). Here, germination assays of the parasitic plant Phelipanche ramosa suggested that PpCCD8-derived compounds are likely noncanonical SLs. (+)-GR24 SL analog is a good mimic for PpCCD8-derived compounds in P. patens, while the effects of its enantiomer (-)-GR24, a KL mimic in angiosperms, are minimal. Interaction and binding assays of seven PpKAI2L proteins pointed to the stereoselectivity toward (-)-GR24 for a single clade of PpKAI2L (eu-KAI2). Enzyme assays highlighted the peculiar behavior of PpKAI2L-H. Phenotypic characterization of Ppkai2l mutants showed that eu-KAI2 genes are not involved in the perception of PpCCD8-derived compounds but act in a PpMAX2-dependent pathway. In contrast, mutations in PpKAI2L-G, and -J genes abolished the response to the (+)-GR24 enantiomer, suggesting that PpKAI2L-G, and -J proteins are receptors for moss SLs.


Subject(s)
Bryopsida/genetics , Heterocyclic Compounds, 3-Ring/metabolism , Lactones/metabolism , Orobanchaceae/physiology , Plant Proteins/genetics , Bryopsida/metabolism , Bryopsida/parasitology , Plant Proteins/metabolism
6.
Viruses ; 13(1)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33430116

ABSTRACT

Virus research has advanced significantly since the discovery of the tobacco mosaic virus (TMV), the characterization of its infection mechanisms and the factors that determine their pathogenicity. However, most viral research has focused on pathogenic viruses to humans, animals and plants, which represent only a small fraction in the virosphere. As a result, the role of most viral genes, and the mechanisms of coevolution between mutualistic viruses, their host and their environment, beyond pathogenicity, remain poorly understood. This review focuses on general aspects of viruses that interact with extremophile organisms, characteristics and examples of mechanisms of adaptation. Finally, this review provides an overview on how knowledge of extremophile viruses sheds light on the application of new tools of relevant use in modern molecular biology, discussing their value in a biotechnological context.


Subject(s)
Biotechnology , Environmental Microbiology , Extremophiles/virology , Animals , Archaeal Viruses/physiology , Bacteria/virology , Humans , Nanomedicine
7.
Front Plant Sci ; 11: 1274, 2020.
Article in English | MEDLINE | ID: mdl-32973835

ABSTRACT

Similarly to other plant genomes of similar size, more than half of the genome of P. patens is covered by Transposable Elements (TEs). However, the composition and distribution of P. patens TEs is quite peculiar, with Long Terminal Repeat (LTR)-retrotransposons, which form patches of TE-rich regions interleaved with gene-rich regions, accounting for the vast majority of the TE space. We have already shown that RLG1, the most abundant TE in P. patens, is expressed in non-stressed protonema tissue. Here we present a non-targeted analysis of the TE expression based on RNA-Seq data and confirmed by qRT-PCR analyses that shows that, at least four LTR-RTs (RLG1, RLG2, RLC4 and tRLC5) and one DNA transposon (PpTc2) are expressed in P. patens. These TEs are expressed during development or under stresses that P. patens frequently faces, such as dehydratation/rehydratation stresses, suggesting that TEs have ample possibilities to transpose during P. patens life cycle. Indeed, an analysis of the TE polymorphisms among four different P. patens accessions shows that different TE families have recently transposed in this species and have generated genetic variability that may have phenotypic consequences, as a fraction of the TE polymorphisms are within or close to genes. Among the transcribed and mobile TEs, tRLC5 is particularly interesting as it concentrates in a single position per chromosome that could coincide with the centromere, and its expression is specifically induced in young sporophyte, where meiosis takes place.

8.
Plants (Basel) ; 9(2)2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32098170

ABSTRACT

C to U editing is one of the post-transcriptional steps which are required for the proper expression of chloroplast and mitochondrial genes in plants. It depends on several proteins acting together which include the PLS-class pentatricopeptide repeat proteins (PPR). DYW2 was recently shown to be required for the editing of many sites in both organelles. In particular almost all the sites associated with the E+ subfamily of PPR proteins are depending on DYW2, suggesting that DYW2 is required for the function of E+-type PPR proteins. Here we strengthened this link by identifying 16 major editing sites controlled by 3 PPR proteins: OTP90, a DYW-type PPR and PGN and MEF37, 2 E+-type PPR proteins. A re-analysis of the DYW2 editotype showed that the 49 sites known to be associated with the 18 characterized E+-type PPR proteins all depend on DYW2. Considering only the 288 DYW2-dependent editing sites as potential E+-type PPR sites, instead of the 795 known editing sites, improves the performances of binding predictions systems based on the PPR code for E+-type PPR proteins. However, it does not compensate for poor binding predictions.

9.
New Phytol ; 219(2): 743-756, 2018 07.
Article in English | MEDLINE | ID: mdl-29781136

ABSTRACT

Strigolactones (SLs) are key hormonal regulators of flowering plant development and are widely distributed amongst streptophytes. In Arabidopsis, SLs signal via the F-box protein MORE AXILLARY GROWTH2 (MAX2), affecting multiple aspects of development including shoot branching, root architecture and drought tolerance. Previous characterization of a Physcomitrella patens moss mutant with defective SL synthesis supports an ancient role for SLs in land plants, but the origin and evolution of signalling pathway components are unknown. Here we investigate the function of a moss homologue of MAX2, PpMAX2, and characterize its role in SL signalling pathway evolution by genetic analysis. We report that the moss Ppmax2 mutant shows very distinct phenotypes from the moss SL-deficient mutant. In addition, the Ppmax2 mutant remains sensitive to SLs, showing a clear transcriptional SL response in dark conditions, and the response to red light is also altered. These data suggest divergent evolutionary trajectories for SL signalling pathway evolution in mosses and vascular plants. In P. patens, the primary roles for MAX2 are in photomorphogenesis and moss early development rather than in SL response, which may require other, as yet unidentified, factors.


Subject(s)
Bryopsida/metabolism , F-Box Proteins/metabolism , Lactones/metabolism , Light , Morphogenesis/radiation effects , Plant Proteins/metabolism , Signal Transduction , Bryopsida/genetics , Bryopsida/radiation effects , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cell Nucleus/radiation effects , Epistasis, Genetic/drug effects , Epistasis, Genetic/radiation effects , F-Box Proteins/genetics , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/radiation effects , Lactones/pharmacology , Models, Biological , Morphogenesis/drug effects , Mutation/genetics , Phenotype , Plant Proteins/genetics , Protein Transport/drug effects , Protein Transport/radiation effects , Sequence Homology, Amino Acid , Transcription, Genetic/drug effects , Transcription, Genetic/radiation effects
10.
Proc Natl Acad Sci U S A ; 114(33): 8877-8882, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28760958

ABSTRACT

RNA editing is converting hundreds of cytosines into uridines during organelle gene expression of land plants. The pentatricopeptide repeat (PPR) proteins are at the core of this posttranscriptional RNA modification. Even if a PPR protein defines the editing site, a DYW domain of the same or another PPR protein is believed to catalyze the deamination. To give insight into the organelle RNA editosome, we performed tandem affinity purification of the plastidial CHLOROPLAST BIOGENESIS 19 (CLB19) PPR editing factor. Two PPR proteins, dually targeted to mitochondria and chloroplasts, were identified as potential partners of CLB19. These two proteins, a P-type PPR and a member of a small PPR-DYW subfamily, were shown to interact in yeast. Insertional mutations resulted in embryo lethality that could be rescued by embryo-specific complementation. A transcriptome analysis of these complemented plants showed major editing defects in both organelles with a very high PPR type specificity, indicating that the two proteins are core members of E+-type PPR editosomes.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Chloroplasts/metabolism , Mitochondria/metabolism , RNA Editing/physiology , RNA-Binding Proteins/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Chloroplasts/genetics , Mitochondria/genetics , RNA-Binding Proteins/genetics
11.
Plant Physiol ; 172(3): 1844-1852, 2016 11.
Article in English | MEDLINE | ID: mdl-27670819

ABSTRACT

The cell-to-cell transport of signaling molecules is essential for multicellular organisms to coordinate the action of their cells. Recent studies identified DWARF14 (D14) as a receptor of strigolactones (SLs), molecules that act as plant hormones and inhibit shoot branching. Here, we demonstrate that RAMOSUS3, a pea ortholog of D14, works as a graft-transmissible signal to suppress shoot branching. In addition, we show that D14 protein is contained in phloem sap and transported through the phloem to axillary buds in rice. SLs are not required for the transport of D14 protein. Disruption of D14 transport weakens the suppression of axillary bud outgrowth of rice. Taken together, we conclude that the D14 protein works as an intercellular signaling molecule to fine-tune SL function. Our findings provide evidence that the intercellular transport of a receptor can regulate the action of plant hormones.


Subject(s)
Lactones/metabolism , Oryza/metabolism , Phloem/metabolism , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Models, Biological , Plant Proteins/genetics , Protein Transport , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Homology, Amino Acid
12.
G3 (Bethesda) ; 6(11): 3647-3653, 2016 Nov 08.
Article in English | MEDLINE | ID: mdl-27613750

ABSTRACT

Powerful genome editing technologies are needed for efficient gene function analysis. The CRISPR-Cas9 system has been adapted as an efficient gene-knock-out technology in a variety of species. However, in a number of situations, knocking out or modifying a single gene is not sufficient; this is particularly true for genes belonging to a common family, or for genes showing redundant functions. Like many plants, the model organism Physcomitrella patens has experienced multiple events of polyploidization during evolution that has resulted in a number of families of duplicated genes. Here, we report a robust CRISPR-Cas9 system, based on the codelivery of a CAS9 expressing cassette, multiple sgRNA vectors, and a cassette for transient transformation selection, for gene knock-out in multiple gene families. We demonstrate that CRISPR-Cas9-mediated targeting of five different genes allows the selection of a quintuple mutant, and all possible subcombinations of mutants, in one experiment, with no mutations detected in potential off-target sequences. Furthermore, we confirmed the observation that the presence of repeats in the vicinity of the cutting region favors deletion due to the alternative end joining pathway, for which induced frameshift mutations can be potentially predicted. Because the number of multiple gene families in Physcomitrella is substantial, this tool opens new perspectives to study the role of expanded gene families in the colonization of land by plants.

13.
Planta ; 243(6): 1441-53, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26979323

ABSTRACT

MAIN CONCLUSION: A set of PpKAI2 - LIKE paralogs that may encode strigolactone receptors in Physcomitrella patens were identified through evolutionary, structural, and transcriptional analyses, suggesting that strigolactone perception may have evolved independently in basal land plants in a similar manner as spermatophytes. Carotenoid-derived compounds known as strigolactones are a new class of plant hormones that modulate development and interactions with parasitic plants and arbuscular mycorrhizal fungi. The strigolactone receptor protein DWARF14 (D14) belongs to the α/ß hydrolase family. D14 is closely related to KARRIKIN INSENSITIVE2 (KAI2), a receptor of smoke-derived germination stimulants called karrikins. Strigolactone and karrikin structures share a butenolide ring that is necessary for bioactivity. Charophyte algae and basal land plants produce strigolactones that influence their development. However phylogenetic studies suggest that D14 is absent from algae, moss, and liverwort genomes, raising the question of how these basal plants perceive strigolactones. Strigolactone perception during seed germination putatively evolved in parasitic plants through gene duplication and neofunctionalization of KAI2 paralogs. The moss Physcomitrella patens shows an increase in KAI2 gene copy number, similar to parasitic plants. In this study we investigated whether P. patens KAI2-LIKE (PpKAI2L) genes may contribute to strigolactone perception. Based on phylogenetic analyses and homology modelling, we predict that a clade of PpKAI2L proteins have enlarged ligand-binding cavities, similar to D14. We observed that some PpKAI2L genes have transcriptional responses to the synthetic strigolactone GR24 racemate or its enantiomers. These responses were influenced by light and dark conditions. Moreover, (+)-GR24 seems to be the active enantiomer that induces the transcriptional responses of PpKAI2L genes. We hypothesize that members of specific PpKAI2L clades are candidate strigolactone receptors in moss.


Subject(s)
Bryopsida/metabolism , Lactones/chemistry , Plant Growth Regulators/chemistry , Plant Proteins/physiology , Binding Sites , Bryopsida/growth & development , Evolution, Molecular , Gene Expression Profiling , Gene Expression Regulation, Plant , Lactones/metabolism , Models, Molecular , Phylogeny , Plant Growth Regulators/genetics , Plant Growth Regulators/metabolism , Plant Proteins/chemistry , Plant Proteins/genetics , RNA, Plant/metabolism , Sequence Analysis, DNA
14.
Development ; 142(21): 3615-9, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26534982

ABSTRACT

Strigolactones (SLs), first identified for their role in parasitic and symbiotic interactions in the rhizosphere, constitute the most recently discovered group of plant hormones. They are best known for their role in shoot branching but, more recently, roles for SLs in other aspects of plant development have emerged. In the last five years, insights into the SL biosynthetic pathway have also been revealed and several key components of the SL signaling pathway have been identified. Here, and in the accompanying poster, we summarize our current understanding of the SL pathway and discuss how this pathway regulates plant development.


Subject(s)
Lactones/metabolism , Plant Development , Signal Transduction , Biosynthetic Pathways , Lactones/chemistry , Plant Shoots/metabolism , Proteolysis
15.
RNA Biol ; 10(9): 1557-75, 2013.
Article in English | MEDLINE | ID: mdl-24037373

ABSTRACT

Four hundred and fifty-eight genes coding for PentatricoPeptide Repeat (PPR) proteins are annotated in the Arabidopsis thaliana genome. Over the past 10 years, numerous reports have shown that many of these proteins function in organelles to target specific transcripts and are involved in post-transcriptional regulation. Therefore, they are thought to be important players in the coordination between nuclear and organelle genome expression. Only four of these proteins have been described to be addressed outside organelles, indicating that some PPRs could function in post-transcriptional regulations of nuclear genes. In this work, we updated and improved our current knowledge on the localization of PPR proteins of Arabidopsis within the plant cell. We particularly investigated the subcellular localization of 166 PPR proteins whose targeting predictions were ambiguous, using a combination of high-throughput cloning and microscopy. Through systematic localization experiments and data integration, we confirmed that PPR proteins are largely targeted to organelles and showed that dual targeting to both the mitochondria and plastid occurs more frequently than expected. These results allow us to speculate that dual-targeted PPR proteins could be important for the fine coordination of gene expressions in both organelles.


Subject(s)
Arabidopsis Proteins/metabolism , Organelles/metabolism , RNA-Binding Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , High-Throughput Screening Assays , Mitochondria/metabolism , Plastids/metabolism , RNA-Binding Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...