Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Cancer ; 147(4): 1163-1179, 2020 08 15.
Article in English | MEDLINE | ID: mdl-31943158

ABSTRACT

Around 40% of newly diagnosed lung cancer patients are Stage IV, where the improvement of survival and reduction of disease-related adverse events is the main goal for oncologists. In this scenario, we present preclinical evidence supporting the use of ABTL0812 in combination with chemotherapy for treating advanced and metastatic Nonsmall cell lung adenocarcinomas (NSCLC) and squamous carcinomas. ABTL0812 is a new chemical entity, currently in Phase 1b/2a clinical trial for advanced squamous NSCLC in combination with paclitaxel and carboplatin (P/C), after successfully completing the first-in-human trial where it showed an excellent safety profile and signs of efficacy. We show here that ABTL0812 inhibits Akt/mTOR axis by inducing the overexpression of TRIB3 and activating autophagy in lung squamous carcinoma cell lines. Furthermore, treatment with ABTL0812 also induces AMPK activation and ROS accumulation. Moreover, combination of ABTL0812 with chemotherapy markedly increases the therapeutic effect of chemotherapy without increasing toxicity. We further show that combination of ABTL0812 and chemotherapy induces nonapoptotic cell death mediated by TRIB3 activation and autophagy induction. We also present preliminary clinical data indicating that TRIB3 could serve as a potential novel pharmacodynamic biomarker to monitor ABTL0812 activity administered alone or in combination with chemotherapy in squamous NSCLC patients. The safety profile of ABTL0812 and its good synergy with chemotherapy potentiate the therapeutic potential of current lines of treatment based on chemotherapy regimens, arising as a promising option for improving these patients therapeutic expectancy.


Subject(s)
Adenocarcinoma/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Squamous Cell/drug therapy , Lung Neoplasms/drug therapy , A549 Cells , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Autophagy/drug effects , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice, Nude , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Survival Analysis , Tumor Burden/drug effects , Xenograft Model Antitumor Assays/methods
2.
Clin Cancer Res ; 26(6): 1432-1448, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31699826

ABSTRACT

PURPOSE: Despite the therapeutic success of existing HER2-targeted therapies, tumors invariably relapse. This study aimed at identifying new mechanisms responsible for HER2-targeted therapy resistance. EXPERIMENTAL DESIGN: We have used a platform of HER2-targeted therapy-resistant cell lines and primary cultures of healthy and tumor-associated fibroblasts (TAF) to identify new potential targets related to tumor escape from anti-HER2 therapies. RESULTS: We have shown that TAFs promote resistance to HER2-targeted therapies. TAFs produce and secrete high levels of FGF5, which induces FGFR2 activation in the surrounding breast cancer cells. FGFR2 transactivates HER2 via c-Src, leading to resistance to HER2-targeted therapies. In vivo, coinoculating nonresistant cell lines with TAFs results in more aggressive and resistant tumors. Resistant cells activate fibroblasts and secrete FGFR ligands, creating a positive feedback loop that fuels resistance. FGFR2 inhibition not only inhibits HER2 activation, but also induces apoptosis in cells resistant to HER2-targeted therapies. In vivo, inhibitors of FGFR2 reverse resistance and resensitize resistant cells to HER2-targeted therapies. In HER2 patients' samples, α-SMA, FGF5, and FGFR2 contribute to poor outcome and correlate with c-Src activation. Importantly, expression of FGF5 and phospho-HER2 correlated with a reduced pathologic complete response rate in patients with HER2-positive breast cancer treated with neoadjuvant trastuzumab, which highlights the significant role of TAFs/FGF5 in HER2 breast cancer progression and resistance. CONCLUSIONS: We have identified the TAF/FGF5/FGFR2/c-Src/HER2 axis as an escape pathway responsible for HER2-targeted therapy resistance in breast cancer, which can be reversed by FGFR inhibitors.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/drug therapy , Cancer-Associated Fibroblasts/pathology , Drug Resistance, Neoplasm , Neoplasm Recurrence, Local/drug therapy , Receptor, ErbB-2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cancer-Associated Fibroblasts/metabolism , Cell Line, Tumor , Female , Humans , Lapatinib/administration & dosage , Mice , Mice, Nude , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Receptor, ErbB-2/metabolism , Signal Transduction , Survival Rate , Trastuzumab/administration & dosage , Xenograft Model Antitumor Assays
3.
Breast Cancer Res ; 20(1): 65, 2018 07 04.
Article in English | MEDLINE | ID: mdl-29973218

ABSTRACT

BACKGROUND: The microenvironment and stress factors like glucocorticoids have a strong influence on breast cancer progression but their role in the first stages of breast cancer and, particularly, in myoepithelial cell regulation remains unclear. Consequently, we investigated the role of glucocorticoids in ductal carcinoma in situ (DCIS) in breast cancer, focusing specially on myoepithelial cells. METHODS: To clarify the role of glucocorticoids at breast cancer onset, we evaluated the effects of cortisol and corticosterone on epithelial and myoepithelial cells using 2D and 3D in vitro and in vivo approaches and human samples. RESULTS: Glucocorticoids induce a reduction in laminin levels and favour the disruption of the basement membrane by promotion of myoepithelial cell apoptosis in vitro. In an in vivo stress murine model, increased corticosterone levels fostered the transition from DCIS to invasive ductal carcinoma (IDC) via myoepithelial cell apoptosis and disappearance of the basement membrane. RU486 is able to partially block the effects of cortisol in vitro and in vivo. We found that myoepithelial cell apoptosis is more frequent in patients with DCIS+IDC than in patients with DCIS. CONCLUSIONS: Our findings show that physiological stress, through increased glucocorticoid blood levels, promotes the transition from DCIS to IDC, particularly by inducing myoepithelial cell apoptosis. Since this would be a prerequisite for invasive features in patients with DCIS breast cancer, its clinical management could help to prevent breast cancer progression to IDC.


Subject(s)
Biomarkers, Tumor/blood , Carcinoma, Ductal, Breast/blood , Carcinoma, Intraductal, Noninfiltrating/blood , Glucocorticoids/blood , Animals , Apoptosis/genetics , Biomarkers, Tumor/genetics , Carcinoma, Ductal, Breast/genetics , Carcinoma, Ductal, Breast/pathology , Carcinoma, Intraductal, Noninfiltrating/genetics , Carcinoma, Intraductal, Noninfiltrating/pathology , Cell Line, Tumor , Disease Progression , Female , Heterografts , Humans , Laminin/genetics , Mice , Myoepithelioma/blood , Myoepithelioma/genetics , Myoepithelioma/pathology , Tumor Microenvironment/genetics
4.
Cancer Lett ; 424: 70-83, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29548821

ABSTRACT

Histamine receptor 1 (HRH1) belongs to the rhodopsin-like G-protein-coupled receptor family. Its activation by histamine triggers cell proliferation, embryonic development, and tumor growth. We recently established that HRH1 is up-regulated in basal and human epidermal growth factor receptor 2 (HER2)-enriched human breast tumors and that its expression correlates with a worse prognosis. Nevertheless, the functional role of HRH1 in basal and HER2-targeted therapy-resistant breast cancer (BC) progression has not yet been addressed. Using terfenadine, a selective chemical inhibitor of HRH1, we showed that the inhibition of HRH1 activity in basal BC cells leads to sub-G0 cell accumulation, suppresses proliferation, promotes cell motility and triggers the activation of extracellular signal-regulated kinase (ERK) signaling, initiating the mitochondrial apoptotic pathway. Furthermore, HER2-targeted therapy-resistant cells express higher levels of HRH1 and are more sensitive to terfenadine treatment. Moreover, in vivo experiments showed that terfenadine therapy reduced the tumor growth of basal and trastuzumab-resistant BC cells. In conclusion, our results suggest that targeting HRH1 is a promising new clinical approach to consider that could enhance the effectiveness of current therapeutic treatment in patients with basal and BC tumors resistant to HER2-targeted therapies.


Subject(s)
Breast Neoplasms/drug therapy , Histamine H1 Antagonists, Non-Sedating/administration & dosage , MAP Kinase Signaling System/drug effects , Receptors, Histamine H1/metabolism , Terfenadine/administration & dosage , Trastuzumab/administration & dosage , Animals , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Female , Gene Expression Regulation, Neoplastic/drug effects , Histamine H1 Antagonists, Non-Sedating/pharmacology , Humans , MCF-7 Cells , Mice , Neoplasms, Basal Cell/drug therapy , Neoplasms, Basal Cell/metabolism , Receptor, ErbB-2/metabolism , Terfenadine/pharmacology , Trastuzumab/pharmacology , Up-Regulation/drug effects , Xenograft Model Antitumor Assays
5.
Clin Cancer Res ; 22(10): 2508-19, 2016 05 15.
Article in English | MEDLINE | ID: mdl-26671995

ABSTRACT

PURPOSE: ABTL0812 is a novel first-in-class, small molecule which showed antiproliferative effect on tumor cells in phenotypic assays. Here we describe the mechanism of action of this antitumor drug, which is currently in clinical development. EXPERIMENTAL DESIGN: We investigated the effect of ABTL0812 on cancer cell death, proliferation, and modulation of intracellular signaling pathways, using human lung (A549) and pancreatic (MiaPaCa-2) cancer cells and tumor xenografts. To identify cellular targets, we performed in silico high-throughput screening comparing ABTL0812 chemical structure against ChEMBL15 database. RESULTS: ABTL0812 inhibited Akt/mTORC1 axis, resulting in impaired cancer cell proliferation and autophagy-mediated cell death. In silico screening led us to identify PPARs, PPARα and PPARγ as the cellular targets of ABTL0812. We showed that ABTL0812 activates both PPAR receptors, resulting in upregulation of Tribbles-3 pseudokinase (TRIB3) gene expression. Upregulated TRIB3 binds cellular Akt, preventing its activation by upstream kinases, resulting in Akt inhibition and suppression of the Akt/mTORC1 axis. Pharmacologic inhibition of PPARα/γ or TRIB3 silencing prevented ABTL0812-induced cell death. ABTL0812 treatment induced Akt inhibition in cancer cells, tumor xenografts, and peripheral blood mononuclear cells from patients enrolled in phase I/Ib first-in-human clinical trial. CONCLUSIONS: ABTL0812 has a unique and novel mechanism of action, that defines a new and drugable cellular route that links PPARs to Akt/mTORC1 axis, where TRIB3 pseudokinase plays a central role. Activation of this route (PPARα/γ-TRIB3-Akt-mTORC1) leads to autophagy-mediated cancer cell death. Given the low toxicity and high tolerability of ABTL0812, our results support further development of ABTL0812 as a promising anticancer therapy. Clin Cancer Res; 22(10); 2508-19. ©2015 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Cycle Proteins/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Up-Regulation/drug effects , Animals , Cell Death/drug effects , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Humans , Mice , Mice, Nude , Rats , Signal Transduction/drug effects
6.
Front Cell Dev Biol ; 3: 32, 2015.
Article in English | MEDLINE | ID: mdl-26052514

ABSTRACT

Two lineages, epithelial, and myoepithelial cells are the main cell populations in the normal mammary gland and in breast cancer. Traditionally, cancer research has been performed using commercial cell lines, but primary cell cultures obtained from fresh breast tissue are a powerful tool to study more reliably new aspects of mammary gland biology, including normal and pathological conditions. Nevertheless, the methods described to date have some technical problems in terms of cell viability and yield, which hamper work with primary mammary cells. Therefore, there is a need to optimize technology for the proper isolation of epithelial and myoepithelial cells. For this reason, we compared four methods in an effort to improve the isolation and primary cell culture of different cell populations of human mammary epithelium. The samples were obtained from healthy tissue of patients who had undergone mammoplasty or mastectomy surgery. We based our approaches on previously described methods, and incorporated additional steps to ameliorate technical efficiency and increase cell survival. We determined cell growth and viability by phase-contrast images, growth curve analysis and cell yield, and identified cell-lineage specific markers by flow cytometry and immunofluorescence in 3D cell cultures. These techniques allowed us to better evaluate the functional capabilities of these two main mammary lineages, using CD227/K19 (epithelial cells) and CD10/K14 (myoepithelial cells) antigens. Our results show that slow digestion at low enzymatic concentration combined with the differential centrifugation technique is the method that best fits the main goal of the present study: protocol efficiency and cell survival yield. In summary, we propose some guidelines to establish primary mammary epithelial cell lines more efficiently and to provide us with a strong research instrument to better understand the role of different epithelial cell types in the origin of breast cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...