Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38256028

ABSTRACT

Genetic testing is crucial in inherited arrhythmogenic channelopathies; however, the clinical interpretation of genetic variants remains challenging. Incomplete penetrance, oligogenic, polygenic or multifactorial forms of channelopathies further complicate variant interpretation. We identified the KCNQ1/p.D446E variant in 2/63 patients with long QT syndrome, 30-fold more frequent than in public databases. We thus characterized the biophysical phenotypes of wildtype and mutant IKs co-expressing these alleles with the ß-subunit minK in HEK293 cells. KCNQ1 p.446E homozygosity significantly shifted IKs voltage dependence to hyperpolarizing potentials in basal conditions (gain of function) but failed to shift voltage dependence to hyperpolarizing potentials (loss of function) in the presence of 8Br-cAMP, a protein kinase A activator. Basal IKs activation kinetics did not differ among genotypes, but in response to 8Br-cAMP, IKs 446 E/E (homozygous) activation kinetics were slower at the most positive potentials. Protein modeling predicted a slower transition of the 446E Kv7.1 tetrameric channel to the stabilized open state. In conclusion, biophysical and modelling evidence shows that the KCNQ1 p.D446E variant has complex functional consequences including both gain and loss of function, suggesting a contribution to the pathogenesis of arrhythmogenic phenotypes as a functional risk allele.


Subject(s)
Arrhythmias, Cardiac , Channelopathies , KCNQ1 Potassium Channel , Humans , Alleles , Arrhythmias, Cardiac/genetics , Cyclic AMP-Dependent Protein Kinases , HEK293 Cells , KCNQ1 Potassium Channel/genetics , Phenotype
2.
Front Physiol ; 14: 1194948, 2023.
Article in English | MEDLINE | ID: mdl-37389121

ABSTRACT

Acid Sensing Ion Channels (ASIC) are proton sensors involved in several physiological and pathophysiological functions including synaptic plasticity, sensory systems and nociception. ASIC channels have been ubiquitously localized in neurons and play a role in their excitability. Information about ASIC channels in cardiomyocyte function is limited. Evidence indicates that ASIC subunits are expressed in both, plasma membrane and intracellular compartments of mammalian cardiomyocytes, suggesting unrevealing functions in the cardiomyocyte physiology. ASIC channels are expressed in neurons of the peripheral nervous system including the nodose and dorsal root ganglia (DRG), both innervating the heart, where they play a dual role as mechanosensors and chemosensors. In baroreceptor neurons from nodose ganglia, mechanosensation is directly associated with ASIC2a channels for detection of changes in arterial pressure. ASIC channels expressed in DRG neurons have several roles in the cardiovascular function. First, ASIC2a/3 channel has been proposed as the molecular sensor of cardiac ischemic pain for its pH range activation, kinetics and the sustained current. Second, ASIC1a seems to have a critical role in ischemia-induced injury. And third, ASIC1a, 2 and 3 are part of the metabolic component of the exercise pressure reflex (EPR). This review consists of a summary of several reports about the role of ASIC channels in the cardiovascular system and its innervation.

3.
J Neurosci ; 41(37): 7779-7796, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34301830

ABSTRACT

Aging, disease, and trauma can lead to loss of vestibular hair cells and permanent vestibular dysfunction. Previous work showed that, following acute destruction of ∼95% of vestibular hair cells in adult mice, ∼20% regenerate naturally (without exogenous factors) through supporting cell transdifferentiation. There is, however, no evidence for the recovery of vestibular function. To gain insight into the lack of functional recovery, we assessed functional differentiation in regenerated hair cells for up to 15 months, focusing on key stages in stimulus transduction and transmission: hair bundles, voltage-gated conductances, and synaptic contacts. Regenerated hair cells had many features of mature type II vestibular hair cells, including polarized mechanosensitive hair bundles with zone-appropriate stereocilia heights, large voltage-gated potassium currents, basolateral processes, and afferent and efferent synapses. Regeneration failed, however, to recapture the full range of properties of normal populations, and many regenerated hair cells had some properties of immature hair cells, including small transduction currents, voltage-gated sodium currents, and small or absent HCN (hyperpolarization-activated cyclic nucleotide-gated) currents. Furthermore, although mouse vestibular epithelia normally have slightly more type I hair cells than type II hair cells, regenerated hair cells acquired neither the low-voltage-activated potassium channels nor the afferent synaptic calyces that distinguish mature type I hair cells from type II hair cells and confer distinctive physiology. Thus, natural regeneration of vestibular hair cells in adult mice is limited in total cell number, cell type diversity, and extent of cellular differentiation, suggesting that manipulations are needed to promote full regeneration with the potential for recovery of vestibular function.SIGNIFICANCE STATEMENT Death of inner ear hair cells in adult mammals causes permanent loss of hearing and balance. In adult mice, the sudden death of most vestibular hair cells stimulates the production of new hair cells but does not restore balance. We investigated whether the lack of systems-level function reflects functional deficiencies in the regenerated hair cells. The regenerated population acquired mechanosensitivity, voltage-gated channels, and afferent synapses, but did not reproduce the full range of hair cell types. Notably, no regenerated cells acquired the distinctive properties of type I hair cells, a major functional class in amniote vestibular organs. To recover vestibular system function in adults, we may need to solve how to regenerate the normal variety of mature hair cells.


Subject(s)
Cell Differentiation/physiology , Hair Cells, Auditory, Inner/physiology , Regeneration/physiology , Synapses/physiology , Animals , Mice , Mice, Knockout , Synaptic Transmission/physiology
4.
Front Cardiovasc Med ; 8: 625449, 2021.
Article in English | MEDLINE | ID: mdl-33693037

ABSTRACT

Next Generation Sequencing has identified many KCNQ1 genetic variants associated with type 1 long QT or Romano-Ward syndrome, most frequently inherited in an autosomal dominant fashion, although recessive forms have been reported. Particularly in the case of missense variants, functional studies of mutants are of aid to establish variant pathogenicity and to understand the mechanistic basis of disease. Two compound heterozygous KCNQ1 mutations (p.A300T and p.P535T) were previously found in a child who suffered sudden death. To provide further insight into the clinical significance and basis for pathogenicity of these variants, different combinations of wildtype, A300T and P535T alleles were co-expressed with the accessory ß-subunit minK in HEK293 cells, to analyze colocalization with the plasma membrane and some biophysical phenotypes of homo and heterotetrameric channels using the patch-clamp technique. A300T homotetrameric channels showed left-shifted activation V1/2 as previously observed in Xenopus oocytes, decreased maximum conductance density, slow rise-time300ms, and a characteristic use-dependent response. A300T slow rise-time300ms and use-dependent response behaved as dominant biophysical traits for all allele combinations. The P535T variant significantly decreased maximum conductance density and Kv7.1-minK-plasma membrane colocalization. P535T/A300T heterotetrameric channels showed decreased colocalization with plasma membrane, slow rise-time300ms and the A300T characteristic use-dependent response. While A300T left shifted activation voltage dependence behaved as a recessive trait when co-expressed with WT alleles, it was dominant when co-expressed with P535T alleles. Conclusions: The combination of P535T/A300T channel biophysical properties is compatible with recessive Romano Ward syndrome. Further analysis of other biophysical traits may identify other mechanisms involved in the pathophysiology of this disease.

5.
Nat Commun ; 11(1): 63, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31896743

ABSTRACT

Each vestibular sensory epithelium in the inner ear is divided morphologically and physiologically into two zones, called the striola and extrastriola in otolith organ maculae, and the central and peripheral zones in semicircular canal cristae. We found that formation of striolar/central zones during embryogenesis requires Cytochrome P450 26b1 (Cyp26b1)-mediated degradation of retinoic acid (RA). In Cyp26b1 conditional knockout mice, formation of striolar/central zones is compromised, such that they resemble extrastriolar/peripheral zones in multiple features. Mutants have deficient vestibular evoked potential (VsEP) responses to jerk stimuli, head tremor and deficits in balance beam tests that are consistent with abnormal vestibular input, but normal vestibulo-ocular reflexes and apparently normal motor performance during swimming. Thus, degradation of RA during embryogenesis is required for formation of highly specialized regions of the vestibular sensory epithelia with specific functions in detecting head motions.


Subject(s)
Otolithic Membrane/embryology , Retinoic Acid 4-Hydroxylase/metabolism , Tretinoin/metabolism , Animals , Evoked Potentials/genetics , Evoked Potentials/physiology , Female , Gene Expression Regulation, Developmental , Head/physiopathology , Mice, Inbred C57BL , Mice, Knockout , Osteopontin/metabolism , Otolithic Membrane/cytology , Otolithic Membrane/metabolism , Retinal Dehydrogenase/genetics , Retinal Dehydrogenase/metabolism , Retinoic Acid 4-Hydroxylase/genetics , Saccule and Utricle/cytology , Saccule and Utricle/embryology , Tremor/genetics , Tremor/physiopathology , Vestibular Function Tests , Vestibule, Labyrinth/embryology , Vestibule, Labyrinth/metabolism
6.
J Pharmacol Exp Ther ; 332(2): 489-99, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19864615

ABSTRACT

Acid-sensing ionic channels (ASICs) have been shown to have a significant role in a growing number of physiological and pathological processes, such as nociception, synaptic transmission and plasticity, mechanosensation, and acidosis-induced neuronal injury. The discovery of pharmacological agents targeting ASICs has significant therapeutic potential and use as a research tool. In our work, we studied the action of transient perfusion (5-15 s) of aminoglycosides (AGs) (streptomycin and neomycin) on the proton-gated ionic currents in dorsal root ganglion (DRG) neurons of the rat and in human embryonic kidney (HEK)-293 cells. In DRG neurons, streptomycin and neomycin (30 microM) produced a significant, concentration-dependent, and reversible reduction in the amplitude of the proton-gated current, and a slowing of the desensitization rate of the ASIC current. Gentamycin (30 microM) also showed a significant reversible action on the ASIC currents. The curves of the pH effect for streptomycin and neomycin indicated that their effect was not significantly affected by pH. In HEK-293 cells, streptomycin (30 microM) produced a significant reduction in the amplitude of the proton-gated current. Neomycin and gentamycin had no significant action. Reduction of extracellular Ca(2+) concentration produced a significant increase in the action of streptomycin and neomycin on the desensitization time course of ASIC currents. These results indicate that ASICs are molecular targets for AGs, which may contribute to the understanding of their actions on excitable cells. Moreover, AGs may constitute a source to develop novel molecules with a greater affinity, specificity, and selectivity for the different ASIC subunits.


Subject(s)
Aminoglycosides/pharmacology , Ganglia, Spinal/drug effects , Membrane Potentials/drug effects , Nerve Tissue Proteins/drug effects , Neurons/physiology , Sodium Channels/drug effects , Acid Sensing Ion Channels , Animals , Calcium/pharmacology , Cells, Cultured , Female , Humans , Hydrogen-Ion Concentration , Male , Membrane Potentials/physiology , Neomycin/pharmacology , Rats , Rats, Wistar , Streptomycin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...