Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci ; 295: 120423, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35196530

ABSTRACT

Hepatocyte growth factor (HGF) has been proved to protect the liver against α-naphthylisothiocyanate (ANIT)-induced cholestasis by acting as an antioxidant agent and redirecting toxic biliary solutes towards blood for urinary excretion. However, this may represent an additional potential risk for kidney integrity, which is already compromised by the cholestatic process itself (cholemic nephropathy). Therefore, in the present work, we studied the renal damage caused by ANIT-induced cholestasis and whether it is aggravated or, on the contrary, counteracted by HGF; if the latter holds, the involvement of its antioxidant properties will be ascertained. ANIT-induced cholestatic deleterious renal effects were corroborated by the presence of urine bile salts, impairment of renal function, and the alterations of renal damage markers, such as HSP72, creatinine clearance, and albuminuria. HGF fully reverted all these, and the cast formation in the tubules was significantly decreased. These findings were associated with the control of renal oxidative stress. In summary, despite HGF enhancing the overload of potentially harmful biliary constituents that the kidney should remove from the bloodstream as an alternative depuration organ in cholestasis, it simultaneously protects the kidney from this damage by counteracting the prooxidant effects resulting from this harmful exposure.


Subject(s)
Cholestasis/drug therapy , Hepatocyte Growth Factor/pharmacology , Kidney Diseases/physiopathology , 1-Naphthylisothiocyanate/adverse effects , 1-Naphthylisothiocyanate/pharmacology , Animals , Antioxidants/pharmacology , Bile Acids and Salts/metabolism , Bile Ducts/physiopathology , Cholestasis/blood , Cholestasis/metabolism , Disease Models, Animal , Hepatocyte Growth Factor/metabolism , Kidney/metabolism , Kidney Diseases/metabolism , Liver/metabolism , Male , Mice , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
2.
Biochem Pharmacol ; 174: 113812, 2020 04.
Article in English | MEDLINE | ID: mdl-31954718

ABSTRACT

Cholestasis is a clinical syndrome common to a large number of hepatopathies, in which either bile production or its transit through the biliary tract is impaired due to functional or obstructive causes; the consequent intracellular retention of toxic biliary constituents generates parenchyma damage, largely via oxidative stress-mediated mechanisms. Hepatocyte growth factor (HGF) and its receptor c-Met represent one of the main systems for liver repair damage and defense against hepatotoxic factors, leading to an antioxidant and repair response. In this study, we evaluated the capability of HGF to counteract the damage caused by the model cholestatic agent, α-naphthyl isothiocyanate (ANIT). HGF had clear anti-cholestatic effects, as apparent from the improvement in both bile flow and liver function test. Histology examination revealed a significant reduction of injured areas. HGF also preserved the tight-junctional structure. These anticholestatic effects were associated with the induction of basolateral efflux ABC transporters, which facilitates extrusion of toxic biliary compounds and its further alternative depuration via urine. The biliary epithelium seems to have been also preserved, as suggested by normalization in serum GGT levels, CFTR expression and cholangyocyte primary cilium structure our results clearly show for the first time that HGF protects the liver from a cholestatic injury.


Subject(s)
1-Naphthylisothiocyanate/toxicity , Cholestasis, Intrahepatic/chemically induced , Cholestasis, Intrahepatic/prevention & control , Hepatocyte Growth Factor/therapeutic use , Oxidative Stress/drug effects , Animals , Cholestasis, Intrahepatic/pathology , Hepatocyte Growth Factor/pharmacology , Male , Mice , Oxidative Stress/physiology
3.
Life Sci ; 218: 324-339, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30610870

ABSTRACT

Among hepatic diseases, cholestatic ductopenic cholangiopathies are poorly studied, and they are rarely given the importance they deserve, especially considering their high incidence in clinical practice. Although cholestatic ductopenic cholangiopathies have different etiologies and pathogenesis, all have the same target (the cholangiocyte) and similar mechanistic basis of cell death. Cholestatic cholangiopathies are characterized, predominantly, by obstructive or functional damage in the biliary epithelium, resulting in an imbalance between proliferation and cholangiocellular death; this leads to the progressive disappearance of bile ducts, as has been shown to occur in primary sclerosing cholangitis, primary biliary cholangitis, low-phospholipid-associated cholelithiasis syndrome, cystic fibrosis-related liver disease, and drug-induced ductopenia, among other biliary disorders. This review summarizes the features of the more common ductopenic syndromes and the cellular mechanisms involved in cholengiocellular death, with focus on the main forms of cholangiocyte death described so far, namely apoptosis, autophagy, necrosis, and necroptosis. It also emphasizes the importance to study in depth the molecular mechanisms of cholengiocyte death to make possible to counteract them with therapeutic purposes. These therapeutic strategies are limited in number and efficacy at present, and this is why it is important to find complementary, safe strategies to stimulate cholangiocellular proliferation in order favor bile duct replenishment as well. Successful in finding appropriate treatments would prevent the patient from having liver transplantation as the only therapeutic alternative.


Subject(s)
Apoptosis , Bile Duct Diseases/drug therapy , Bile Duct Diseases/pathology , Cholagogues and Choleretics/therapeutic use , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...