Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Toxins (Basel) ; 12(11)2020 11 03.
Article in English | MEDLINE | ID: mdl-33153112

ABSTRACT

Domoic acid (DA), the main toxin responsible for Amnesic Shellfish Poisoning, frequently affects the marine resources of Chile and other countries across the South Pacific, thus becoming a risk for human health. One of the affected resources is the scallop Argopecten purpuratus. Even though this species has a high commercial importance in Northern Chile and Peru, the characteristics of its DA depuration are not known. In this work, the DA depuration was studied by means of two experiments: one in controlled (laboratory) and another in natural conditions. All organs of A. purpuratus depurated the toxin very quickly in both experiments. In some organs, an increase or a very small decrease of toxin was detected in the early depuration steps. Several models were used to describe this kinetics. The one that included toxin transfer between organs and independent depuration from each organ was the model that best fit the data. It seems, therefore, that the DA in this species is quickly transferred from the digestive gland to all other organs, which release it into the environment. Physiological differences in the two experiments have been shown to have some effect on the depuration from each organ but the actual reasons are still unknown.


Subject(s)
Digestive System/metabolism , Kainic Acid/analogs & derivatives , Marine Toxins/metabolism , Pectinidae/metabolism , Seafood , Shellfish Poisoning , Animals , Body Burden , Kainic Acid/metabolism , Kainic Acid/toxicity , Kinetics , Marine Toxins/toxicity , Seafood/adverse effects , Tissue Distribution , Toxicokinetics
2.
Article in English | MEDLINE | ID: mdl-25769036

ABSTRACT

Harmful algae blooms (HABs) are the main source of marine toxins in the aquatic environment surrounding the austral fjords in Chile. Huichas Island (Aysén) has an history of HABs spanning more than 30 years, but there is limited investigation of the bioaccumulation of marine toxins in the bivalves and gastropods from the Region of Aysén. In this study, bivalves (Mytilus chilenses, Choromytilus chorus, Aulacomya ater, Gari solida, Tagelus dombeii and Venus antiqua) and carnivorous gastropods (Argobuccinum ranelliformes and Concholepas concholepas) were collected from 28 sites. Researchers analysed the accumulation of STX-group toxins using a LC with a derivatisation post column (LC-PCOX), while lipophilic toxins (OA-group, azapiracids, pectenotoxins and yessotoxins) were analysed using LC-MS/MS with electrospray ionisation (+/-) in visceral (hepatopancreas) and non-visceral tissues (mantle, adductor muscle, gills and foot). Levels of STX-group and OA-group toxins varied among individuals from the same site. Among all tissue samples, the highest concentrations of STX-group toxins were noted in the hepatopancreas in V. antiqua (95 ± 0.1 µg STX-eq 100 g(-1)), T. dombeii (148 ± 1.4 µg STX-eq 100 g(-1)) and G. solida (3232 ± 5.2 µg STX-eq 100 g(-1); p < 0.05); in the adductor muscle in M. chilensis (2495 ± 6.4 µg STX-eq 100 g(-1); p < 0.05) and in the foot in C. concholepas (81 ± 0.7 µg STX-eq 100 g(-1)) and T. dombeii (114 ± 1.2 µg STX-eq 100 g(-1)). The highest variability of toxins was detected in G. solida, where high levels of carbamate derivatives were identified (GTXs, neoSTX and STX). In addition to the detected hydrophilic toxins, OA-group toxins were detected (OA and DTX-1) with an average ratio of ≈1:1. The highest levels of OA-group toxins were in the foot of C. concholepas, with levels of 400.3 ± 3.6 µg OA eq kg(-1) (p < 0.05) and with a toxic profile composed of 90% OA. A wide range of OA-group toxins was detected in M. chilensis with a toxicity < 80 µg OA eq kg(-1), but with 74% of those toxins detected in the adductor muscle. In all evaluated species, there was no detection of lipophilic toxins associated with biotransformation in molluscs and carnivorous gastropods. In addition, the STX-group and OA-group toxin concentrations in shellfish was not associated with the presence of HAB. The ranking of toxin concentration in the tissues of most species was: digestive glands > mantle > adductor muscle for the STX-group toxins and foot > digestive gland for the OA-group toxins. These results gave a better understanding of the variability and compartmentalisation of STX-group and OA-group toxins in different bivalve and gastropod species from the south of Chile, and the analyses determined that tissues could play an important role in the biotransformation of STX-group toxins and the retention of OA-group toxins.


Subject(s)
Bivalvia/metabolism , Gastropoda/metabolism , Meat/analysis , Okadaic Acid/analysis , Saxitoxin/analysis , Animals , Biotransformation , Bivalvia/classification , Chile , Chromatography, Liquid , Gastropoda/classification , Harmful Algal Bloom , Shellfish Poisoning , Tandem Mass Spectrometry
3.
Toxicon ; 54(6): 754-62, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19505493

ABSTRACT

The tunicate Pyura chilensis (Molina, 1782); Phylum Chordata; Subphylum Urochordata; Class Ascidiacea, common local name "piure" or sea squirt; a filter-feeder (plankton and suspended particles) sessile species; may play an important role in monitoring domoic acid (DA) the principal toxic component of Amnesic Shellfish Poisoning (ASP). Significant DA concentrations have been determined in tunicate samples, collected during a recent ASP outbreak in Bahía Inglesa, an important scallop (Argopecten purpuratus) farming area. Several infaunal species were tested for the presence of DA, in addition to the usual scallop monitoring programme. DA was found at sub-toxic levels in filtering bivalves such as mussels (Mytilus chilensis), large mussels (Aulacomya ater) and clams (Protothaca thaca) (6.4, 5.4 and 4.7 microg DA/g tissue respectively). Of particular interest was the observation of significant accumulations of toxic Pseudo-nitzschia sp. diatoms in the internal siphon and atrium spaces of the tunicate. Toxin distribution within major tunicate organs was heterogeneous with 8.7-15.5 microg DA/g in edible tissues, 14.9-17.9 microg DA/g in the fecal material and 13.6-32.7 microg DA/g in the gut content. DA was determined by HPLC-UV and confirmed by diode-array detection and LC-MS/MS analysis. This is the first report of the presence of DA in a tunicate that is regularly consumed by coastal populations. These results confirm the need to include these organisms in sanitation programs for marine toxins.


Subject(s)
Diatoms/growth & development , Kainic Acid/analogs & derivatives , Urochordata , Animals , Kainic Acid/analysis , Kainic Acid/toxicity
4.
Toxicon ; 46(8): 852-8, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-16289180

ABSTRACT

In December 1999, domoic acid (DA) a potent neurotoxin, responsible for the syndrome Amnesic Shellfish Poisoning (ASP) was detected for the first time in shellfish harvested in Ireland. Two liquid chromatography (LC) methods were applied to quantify DA in shellfish after sample clean-up using solid-phase extraction (SPE) with strong anion exchange (SAX) cartridges. Toxin detection was achieved using photodiode array ultraviolet (LC-UV) and multiple tandem mass spectrometry (LC-MS(n)). DA was identified in four species of bivalve shellfish collected along the west and south coastal regions of the Republic of Ireland. The amount of DA that was present in three species was within EU guideline limits for sale of shellfish (20 microg DA/g); mussels (Mytilus edulis), <1.0 microg DA/g; oysters (Crassostrea edulis), <5.0 microg DA/g and razor clams (Ensis siliqua), <0.3 microg DA/g. However, king scallops (Pecten maximus) posed a significant human health hazard with levels up to 240 microg DA/g total tissues. Most scallop samples (55%) contained DA at levels greater than the regulatory limit. The DA levels in the digestive glands of some samples of scallops were among the highest that have ever been recorded (2,820 microg DA/g).


Subject(s)
Bivalvia/chemistry , Environmental Monitoring/statistics & numerical data , Kainic Acid/analogs & derivatives , Marine Toxins/analysis , Shellfish , Animals , Chromatography, Liquid , Ireland , Kainic Acid/analysis , Kainic Acid/chemistry , Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...