Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38926306

ABSTRACT

Nowadays, all productive sectors, including the construction industry, are facing the challenge of reducing their environmental impact. To achieve this objective, numerous actions are being carried out to access greater levels of environmental and economic sustainability. Techniques as Life Cycle Assessment contribute to quantifying environmental impacts, promoting a circular economy in a sector that consumes a high volume of resources, materials, and energy while generating large amounts of gaseous, liquid, or solid emissions. The present study aims to deepen our understanding of aspects that demonstrate the benefits of using RA instead of natural aggregates. This study not only quantifies the environmental impact but also explores the effects of potential improvements in the productive system and their impact on reducing environmental harm. The Life Cycle Assessment methodology is applied to quantify and compare the environmental impacts generated in the production of a ton of mixed recycled aggregates (MRA) from construction and demolition wastes, based on the data provided by plant managers. This is compared to the environmental impacts generated in the production of one ton of natural aggregates extracted from a quarry. The results revealed that the production of mixed recycled aggregate is more environmentally beneficial, confirming a reduction of 70.66% in environmental impacts during the production of recycled aggregates, in comparison to the natural aggregates extraction. Furthermore, the economic analysis demonstrates the economic advantage since the cost of producing recycled aggregates is over 30% cheaper than natural aggregates, being more competitive even when the transportation distances from the plant to the work sites exceed those of natural aggregates.

2.
Environ Sci Pollut Res Int ; 31(12): 17690-17705, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37338684

ABSTRACT

Sugarcane vinasse wastewater (SVW) is one of the most voluminous waste generated in the ethanol industry and usually applied in fertigation. It is characterized by presenting high COD and BOD; thus, continued disposal of vinasse results in negative environmental impacts. In this paper, we investigated the potential of SVW in replacement of water in mortar, rethinking about reuse of effluent, reduction of pollutants in the environment, and water consumption in civil construction. Mortar composites with 0, 20, 40, 60, 80, and 100% of water replaced by SVW were studied in order to determine the optimum content. Mortars with 60 to 100% of SVW result in improved workability and reduction in water demand. The mortars with 20, 40, and 60% SVW resulted in satisfactory mechanical properties, i.e., similar to the control mortar. However, XRD analysis of cement pastes showed that the SVW causes a delay in CH formation, reaching mechanical strength after 28 days. Durability tests results showed that SVW contributes to the mortar becoming more impermeable; therefore, less susceptible to weathering. This study provides an important evaluation of the potential of SVW for application in civil construction, indicating relevant results for replacement of water by liquid wastes in cementitious composites and reduction the use of natural resources.


Subject(s)
Environmental Pollutants , Saccharum , Water , Construction Materials , Wastewater
3.
Materials (Basel) ; 16(17)2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37687734

ABSTRACT

In the last few decades, there has been increasing social awareness for environmental conservation, which is driving the development of composite materials based on natural fibers. These new materials have interesting properties that allow for their use in a variety of applications. This study deals with the development of composite materials based on unsaturated polyester resins reinforced with recycled mineral fibers, such as slate fibers obtained from slate production waste, which have similar properties to glass fiber. The mechanical properties of these composites have been determined by tensile and flexural/bending tests. The influence of various variables such as matrix composition (flexible polyester content) and the weight percentage of fiber added to mechanical properties were evaluated. The flexible/rigid polyester content varied from 0 to 40% and the fiber one from 0 to 30 wt%. Composites with ≥20 wt% of slate fiber reinforcement are shown to have tensile (35 MPa) and flexural (57 MPa) strengths that can compete with materials reinforced with artificial fibers.

4.
J Environ Manage ; 344: 118409, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37399624

ABSTRACT

This work presents a case study of waste incorporation, where precast concrete block rejects were reincorporated into the production of new recycled concrete blocks which stands for a technically and environmentally viable alternative to natural aggregates. This study therefore evaluated the technical feasibility, first, and the leaching performance, after, of recycled vibro-compacted dry mixed concrete blocks using different percentages of substitution of recycled aggregates (RA) coming from precast concrete block rejects in order to identify those that presented a better technical performance. According to the results, concrete blocks with a 20% of RA incorporation presented an optimum physic-mechanical behaviour. The environmental evaluation based on leaching tests was carried out to identify the most conflictive elements legally regulated according to their pollutant release levels and investigate their different release mechanisms. The leaching study performed in concrete monoliths showed that in blocks with 20% of RA incorporation: Mo, Cr, and sulphate anions presented a higher mobility during the diffusion leaching tests; Sb and Cu presented an average mobility; Ba and Zn exhibited lower mobility levels and their corresponding release mechanisms for each of them. However, the limits for pollutant release in construction materials in a monolithic state were not surpassed by far.


Subject(s)
Construction Materials , Environmental Pollutants , Sulfates , Recycling/methods
5.
Materials (Basel) ; 15(15)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35955290

ABSTRACT

This study is framed within the circular economy model through the valorisation of industrial by-products. This research shows the results of producing self-compacting mortars (SCMs) with electric arc furnace dust (EAFD) and other industrial by-products such as fly ash, conforming (FA) or not conforming (NcFA), from coal-fired power plants, or recovery filler (RF) from hot-mix asphalt plants. Three batches of SCMs, each with one industrial-by product (FA, NcFA, or RF), and three levels of EAFD ratio incorporation (0%, 10%, 20%), were tested. An extra batch with a greater amount of FA was manufactured. When the incorporation ratio of EAFD rose, the mechanical strength decreased, due to the presence of a calcium zinc hydroxide dihydrate phase; nevertheless, this decrease diminished over time. All SCM mixes, except the 40C 40FA 20 EAFD mix, were above 20 MPa at 28 days. All mixes named 70C and 40C reached 40 and 30 MPa, respectively, at 90 days. Mixes with EAFD showed less capillarity and no difference in water absorption by immersion with respect to mixes without EAFD after 91 days. The SCMs designed proved to be stable in terms of leaching of the heavy metals contained in EAFD, where all the hardened SCMs were classified as inert.

6.
Materials (Basel) ; 15(7)2022 Apr 03.
Article in English | MEDLINE | ID: mdl-35407967

ABSTRACT

One way to contribute to sustainability in the construction sector is through the incorporation of construction by-products from their own activities. This work intends to extend the possibilities for enhancement of these by-products through the incorporation of four different ones, as fillers, in mortar production. The influence of these incorporations in mortar production was compared with a reference mortar with siliceous filler in its fresh state; workability, entrained air content and fresh density, and in its hardened state; capillary water absorption, water vapour permeability and shrinkage (up to 91 days); and adhesive, compressive, and flexural strength; the last two were studied over time (up to 180 days). Despite the reduction in compressive strength, both in the short and long term, there was a gain in adhesive strength when the construction by-products were incorporated. Regarding the physical properties and durability studied, no relevant differences were found with respect to the reference mortar. According to the European Specifications, these mortars could be used as regular or coloured rendering and plastering mortars, and masonry mortars, and these findings promote the circular economy in the construction sector.

7.
Environ Sci Pollut Res Int ; 28(19): 24441-24454, 2021 May.
Article in English | MEDLINE | ID: mdl-32323241

ABSTRACT

Green philosophy is gaining popularity worldwide. Recycling materials from building demolitions, reutilizing by-products from industrial facilities and exploring the potential uses of waste during a second life cycle are the objectives of this philosophy. In the present article, bottom ashes from electric power generation plants using biofuel combustion were evaluated to verify their potential use as expansive clay stabilizers. Two objectives are pursued: (1) finding a new use for waste that is typically landfilled despite its great potential arising from its technical properties and (2) improving the mechanical properties and reducing the expansive nature of the expansive clays identified during the construction of a motorway. Based on this framework, the present study demonstrated the potential of biomass bottom ashes to stabilize expansive clays. The optimum dosage to improve the properties of clays was determined based on performance parameters, such as plasticity, free swelling or soil collapse. Afterwards, the contaminating potential of ashes was evaluated, being classified as hazardous waste. However, the stabilized mixtures were classified as inert products, thus guaranteeing the environmental feasibility of their use. Finally, the technical application of the stabilized clays as filling materials for embankments and subgrade for light traffic roads was proved. Graphical abstract.


Subject(s)
Coal Ash , Soil , Biomass , Clay , Construction Materials , Incineration , Recycling
8.
Environ Sci Pollut Res Int ; 27(1): 125-132, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31154639

ABSTRACT

The construction and demolition waste is one of the heaviest and most voluminous waste streams generated in the European Union. It comprises approximately one third of the waste generated. Recycling this stream waste will provide ecological and sustainable benefits. The recycled aggregates from the construction and demolition waste are beginning to be used in civil construction, as substitutes for natural aggregates. The possible applications of recycled aggregates in the infrastructure construction projects will mainly depend on the quality of the recycled aggregates. This will be determined by the nature and the origin of the construction and demolition waste, and the treatment system used. It requires a comprehensive response by part of the processing agents, mainly construction and demolition companies, and above all public administrations. This work proposes recommendations for the handling of the construction and demolition waste, both in the demolition and in the treatment plants. A quality control system is suggested too.


Subject(s)
Construction Materials , Industrial Waste/analysis , Waste Management , Construction Industry , Ecology , European Union , Quality Control , Recycling
9.
Environ Sci Pollut Res Int ; 26(35): 35565-35573, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30963432

ABSTRACT

Construction and demolition recycling is regarded as an essential subject in the EU, as the target established by its policies to 2020 ratio is far from being achieved. The use of materials recycled from such waste has been widely deemed a contribution to the sustainability of the construction sector. Gypsum is one the limiting components of recycled aggregates used as a base layer in road construction. The aim of this research was to analyse the effect on mechanical properties, leaching behaviour and dimensional changes at long term in recycled aggregates with different gypsum contents. Load bearing capacity was conducted by California bearing ratio on prepared samples. Moreover, the compressive strength was conducted on samples prepared with a 3% cement addition. Both tests were studied long term. Dimensional changes were studied through swelling in California bearing ratio test mould under the modified Proctor conditions for 1 year and using an oedometer device for 5 months. Furthermore, environmental risk assessment was performed, classifying the material with gypsum addition as non-hazardous, given that sulphate anion was above the inert limit. Good mechanical behaviour in the long term and no significant dimensional changes were found regardless of gypsum content.


Subject(s)
Calcium Sulfate/analysis , Construction Materials/analysis , Waste Management/methods , California , Compressive Strength , Industrial Waste/analysis , Recycling , Sulfates/analysis
10.
Environ Sci Pollut Res Int ; 25(36): 36024-36034, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29552718

ABSTRACT

Extensive green roofs are urban construction systems that provide thermal regulation and sound proofing for the buildings involved, in addition to providing an urban heat island mitigation or water retention. On the other hand, policies towards reduction of energy consumption, a circular economy and sustainability are core in the European Union. Motivated by this, an experimental study was carried out to evaluate the environmental risk assessment according to release levels of polluting elements on leachates of different green roof substrate mixtures based on recycled aggregates from construction and demolition waste through (i) the performance in laboratory of two procedures: compliance and percolation tests and (ii) an upscaled experimental leaching test for long-term on-site prediction. Four plots were built on a building roof and covered with autochthonous Mediterranean plants in Córdoba, South of Spain. As growing substrate, four mixtures were used of a commercial growing substrate with different proportions of a fine mixed recycled aggregate ranging from 0 to 75% by volume. The results show that these mixtures were classified as non-hazardous materials according to legal limits of the Landfill Directive 2003/33/CE. The release levels registered in extensive green roofs were lower compared to the laboratory test data. This shows how laboratory conditions can overestimate the potential pollutant effect of these materials compared to actual conditions.


Subject(s)
Construction Industry/methods , Construction Materials , Environmental Pollutants/analysis , Industrial Waste , Metals/analysis , Plants , Recycling/methods , Risk Assessment , Spain , Waste Disposal Facilities
11.
Environ Sci Pollut Res Int ; 25(36): 36014-36023, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29282660

ABSTRACT

In general terms, plant managers of sites producing construction wastes assess materials according to concise, legally recommended leaching tests that do not consider the compaction stage of the materials when they are applied on-site. Thus, the tests do not account for the real on-site physical conditions of the recycled aggregates used in civil works (e.g., roads or embankments). This leads to errors in estimating the pollutant potential of these materials. For that reason, in the present research, an experimental procedure is designed as a leaching test for construction materials under compaction. The aim of this laboratory test (designed specifically for the granular materials used in civil engineering infrastructures) is to evaluate the release of pollutant elements when the recycled aggregate is tested at its commercial grain-size distribution and when the material is compacted under on-site conditions. Two recycled aggregates with different gypsum contents (0.95 and 2.57%) were used in this study. In addition to the designed leaching laboratory test, the conventional compliance leaching test and the Dutch percolation test were performed. The results of the new leaching method were compared with the conventional leaching test results. After analysis, the chromium and sulphate levels obtained from the newly designed test were lower than those obtained from the conventional leaching test, and these were considered more seriously pollutant elements. This result confirms that when the leaching behaviour is evaluated for construction aggregates without density alteration, crushing the aggregate and using only the finest fraction, as is done in the conventional test (which is an unrealistic situation for aggregates that are applied under on-site conditions), the leaching behaviour is not accurately assessed.


Subject(s)
Construction Materials , Environmental Pollutants/analysis , Recycling/methods , Calcium Sulfate , Chromium/analysis , Construction Materials/analysis , Environmental Pollutants/chemistry , Industrial Waste , Sulfates/analysis
12.
Materials (Basel) ; 9(2)2016 Jan 26.
Article in English | MEDLINE | ID: mdl-28787874

ABSTRACT

In spite of not being legally accepted in most countries, mixed recycled aggregates (MRA) could be a suitable raw material for concrete manufacturing. The aims of this research were as follows: (i) to analyze the effect of the replacement ratio of natural coarse aggregates with MRA, the amount of ceramic particles in MRA, and the amount of cement, on the mechanical and physical properties of a non-structural concrete made with a low cement content; and (ii) to verify if it is possible to achieve a low-strength concrete that replaces a greater amount of natural aggregate with MRA and that has a low cement content. Two series of concrete mixes were manufactured using 180 and 200 kg/m³ of CEM II/A-V 42.5 R type Portland cement. Each series included seven concrete mixes: one with natural aggregates; two MRA with different ceramic particle contents; and one for each coarse aggregate replacement ratio (20%, 40%, and 100%). To study their properties, compressive and splitting tensile strength, modulus of elasticity, density, porosity, water penetration, and sorptivity, tests were performed. The results confirmed that the main factors affecting the properties analyzed in this research are the amount of cement and the replacement ratio; the two MRAs used in this work presented a similar influence on the properties. A non-structural, low-strength concrete (15 MPa) with an MRA replacement ratio of up to 100% for 200 kg/m³ of cement was obtained. This type of concrete could be applied in the construction of ditches, sidewalks, and other similar civil works.

13.
Materials (Basel) ; 9(2)2016 Feb 02.
Article in English | MEDLINE | ID: mdl-28787892

ABSTRACT

This research aims to produce non-structural concrete with mixed recycled aggregates (MRA) in upscaled applications with low-cement content. Four slabs were executed with concrete made with different ratios of coarse MRA (0%, 20%, 40% and 100%), using the mix design, the mixing procedures and the facilities from a nearby concrete production plant. The analysis of the long-term compressive and splitting tensile strengths in concrete cores, extracted from the slabs, allowed the highlighting of the long-term high strength development potential of MRA incorporation. The study of cast specimens produced in situ under the same conditions as the slabs showed, firstly, that the use of MRA has a great influence on the properties related to durability, secondly, that the loss of compressive strength for total MRA incorporation relative to control concrete increases proportionally with the class strength, and, thirdly, that the mechanical properties (including Schmidt hammer results) from the concrete slabs showed no significant differences relative to the control concrete for coarse aggregates replacements up to 40%. Therefore, this upscaled experimental study supports the application of concrete with 100% coarse MRA incorporation and low cement content in non-structural civil works such as bike lanes, gutters, ground slabs, leveling surfaces, and subgrades for foundations. To the best of the authors' knowledge, there have not been any upscaled applications of concrete with MRA and low cement content.

SELECTION OF CITATIONS
SEARCH DETAIL
...