Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
J Agric Food Chem ; 71(46): 17485-17493, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37943570

ABSTRACT

Myoglobin is the main factor responsible for muscle pigmentation in tuna; muscle color depends upon changes in the oxidative state of myoglobin. The tuna industry has reported muscle greening after thermal treatment involving metmyoglobin (MetMb), trimethylamine oxide (TMAO), and free cysteine (Cys). It has been proposed that this pigmentation change is due to a disulfide bond between a unique cysteine residue (Cys10) found in tuna MetMb and free Cys. However, no evidence has been given to confirm that this reaction occurs. In this review, new findings about the mechanism of this greening reaction are discussed, showing evidence of how free radicals produced from Cys oxidation under thermal treatment participate in the greening of tuna and horse muscle during thermal treatment. In addition, the reaction conditions are compared to other green myoglobins, such as sulfmyoglobin, verdomyoglobin, and cholemyoglobin.


Subject(s)
Cysteine , Myoglobin , Animals , Horses , Myoglobin/chemistry , Cysteine/chemistry , Metmyoglobin/chemistry , Oxidation-Reduction , Muscles/metabolism
2.
Molecules ; 28(16)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37630332

ABSTRACT

Extracellular synthesis of functional cyclodextrins (CDs) as intermediates of starch assimilation is a convenient microbial adaptation to sequester substrates, increase the half-life of the carbon source, carry bioactive compounds, and alleviate chemical toxicity through the formation of CD-guest complexes. Bacteria encoding the four steps of the carbohydrate metabolism pathway via cyclodextrins (CM-CD) actively internalize CDs across the microbial membrane via a putative type I ATP-dependent ABC sugar importer system, MdxEFG-(X/MsmX). While the first step of the CM-CD pathway encompasses extracellular starch-active cyclomaltodextrin glucanotransferases (CGTases) to synthesize linear dextrins and CDs, it is the ABC importer system in the second step that is the critical factor in determining which molecules from the CGTase activity will be internalized by the cell. Here, structure-function relationship studies of the cyclo/maltodextrin-binding protein MdxE of the MdxEFG-MsmX importer system from Thermoanaerobacter mathranii subsp. mathranii A3 are presented. Calorimetric and fluorescence studies of recombinant MdxE using linear dextrins and CDs showed that although MdxE binds linear dextrins and CDs with high affinity, the open-to-closed conformational change is solely observed after α- and ß-CD binding, suggesting that the CM-CD pathway from Thermoanaerobacterales is exclusive for cellular internalization of these molecules. Structural analysis of MdxE coupled with docking simulations showed an overall architecture typically found in sugar-binding proteins (SBPs) that comprised two N- and C-domains linked by three small hinge regions, including the conserved aromatic triad Tyr193/Trp269/Trp378 in the C-domain and Phe87 in the N-domain involved in CD recognition and stabilization. Structural bioinformatic analysis of the entire MdxFG-MsmX importer system provided further insights into the binding, internalization, and delivery mechanisms of CDs. Hence, while the MdxE-CD complex couples to the permease subunits MdxFG to deliver the CD into the transmembrane channel, the dimerization of the cytoplasmatic promiscuous ATPase MsmX triggers active transport into the cytoplasm. This research provides the first results on a novel thermofunctional SBP and its role in the internalization of CDs in extremely thermophilic bacteria.


Subject(s)
Carrier Proteins , Dextrins , Carrier Proteins/genetics , Polysaccharides , Firmicutes , Bacteria, Anaerobic , Starch
3.
Food Chem ; 408: 135165, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36527926

ABSTRACT

The meat greening is an abnormal pigmentation related to microbiological contamination and lipid oxidation during storage. This color change results from sulfmyoglobin (SulfMb) production promoted by the reaction between metmyoglobin (MetMb), H2O2, and thiol compounds. Spectral studies on cooked meat suggested the production of SulfMb, probably due to the increment of free radicals during thermal treatment. Thus, we evaluated the involvement of free radicals and heme iron in the SulfMb production from horse MetMb and free cysteine (Cys) during thermal treatment. The results confirm that the reaction of SulfMb production at meat muscle pH (5.7-7.2) during heat treatment is a product of free radicals formed from Cys oxidation (SH) and reactive oxygen species (O2-, H2O2). This is catalyzed by the release of heme iron, thus promoting a consecutive reaction having MbFe(IV)O as a reaction intermediate.


Subject(s)
Cysteine , Hydrogen Peroxide , Animals , Horses , Hydrogen Peroxide/chemistry , Myoglobin/chemistry , Metmyoglobin/chemistry , Free Radicals , Oxidation-Reduction , Iron/chemistry , Heme
4.
PeerJ ; 10: e13923, 2022.
Article in English | MEDLINE | ID: mdl-35996665

ABSTRACT

Background: Tuna muscle greening is a problem that occurs after heating. A hypothesis has been postulated to address this problem, involving a conserved Cys residue at position 10 (Cys-10) present on tuna myoglobin (Mb) that is exposed during the thermic treatment, forming a disulfide bond with free cysteine (Cys) in the presence of trimethylamine oxide (TMAO), resulting in the greening of the tuna Mb. Methods: We present a study using skipjack tuna (Katsuwonus pelamis) metmyoglobin (MbFe(III)-H2O) where the effect of free Cys (1-6 mM), TMAO (1.33 mM), and catalase on the greening reaction (GR) was monitored by UV-vis spectrometry during thermal treatment at 60 °C for 30 min. Moreover, the participation of Cys-10 on the GR was evaluated after its blocking with N-ethymaleimide. Results: The GR occurred in tuna MbFe(III)-H2O after heat treatment with free Cys, forming sulfmyoglobin (MbFe(II)-S) as the responsible pigment for the tuna greening. However, the rate constants of MbFe(II)-S production depended on Cys concentration (up to 4 mM) and occurred regardless of the TMAO presence. We postulate that two consecutive reactions involve an intermediate ferrylmyoglobin (promoted by H2O2) species with a subsequent MbFe(II)-S formation since the presence of catalase fosters the reduction of the rate reaction. Moreover, GR occurred even with blocked Cys-10 residues in tuna Mb and horse Mb (without Cys in its sequence). Discussion: We found that GR is not exclusive to tuna Mb´s, and it can be promoted in other muscle systems. Moreover, Cys and thermal treatment are indispensable for promoting this pigmentation anomaly.


Subject(s)
Cysteine , Metmyoglobin , Animals , Horses , Metmyoglobin/chemistry , Tuna/physiology , Catalase , Hydrogen Peroxide
5.
Sci Rep ; 12(1): 6392, 2022 04 16.
Article in English | MEDLINE | ID: mdl-35430601

ABSTRACT

Prebiotics and probiotics have shown a number of beneficial impacts preventing diseases in cultured shrimps. Complex soluble carbohydrates are considered ideal for fostering microbiota biodiversity by fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPS). Here we evaluated the growth performance and microbiota composition of the white shrimp Litopenaeus vannamei after dietary intervention using agavin as a FODMAP prebiotic under farming conditions. Adult L. vannamei were raised at a shrimp farm and the effect of agavin supplemented at 2% (AG2) or 10% (AG10) levels were compared to an agavin-free basal diet (BD). After 28 days-trial, the feed conversion ratio, total feed ingested, and protein efficiency ratio was significantly improved on animals fed with AG2. At the same time, no effect on growth performance was observed in AG10. Surprisingly, after sequencing the V3-V4 regions of the 16S rRNA gene a higher microbial richness and diversity in the hepatopancreas and intestine was found only in those animals receiving the AG10 diet, while those receiving the AG2 diet had a decreased richness and diversity, both diets compared to the BD. The beta diversity analysis showed a clear significant microbiota clustering by agavin diets only in the hepatopancreas, suggesting that agavin supplementation had a more substantial deterministic effect on the microbiota of hepatopancreas than on the intestine. We analyzed the literature to search beneficial microbes for shrimp's health and found sequences for 42 species in our 16S data, being significantly increased Lactobacillus pentosus, Pseudomonas putida and Pseudomonas synxantha in the hepatopancreas of the AG10 and Rodopseudomonas palustris and Streptococcus thermophiles th1435 in the hepatopancreas of the AG2, both compared to BD. Interestingly, when we analyzed the abundance of 42 beneficial microbes as a single microbial community "meta-community," found an increase in their abundance as agavin concentration increases in the hepatopancreas. In addition, we also sequenced the DNA of agavin and found 9 of the 42 beneficial microbes. From those, Lactobacillus lactis and Lactobacillus delbrueckii were found in shrimps fed with agavin (both AG2 and AG10), and Lysinibacillus fusiformis in AG10 and they were absent the BD diet, suggesting these three species could be introduced with the agavin to the diet. Our work provides evidence that agavin supplementation is associated with an increase of beneficial microbes for the shrimp microbiota at farming conditions. Our study provides the first evidence that a shrimp prebiotic may selectively modify the microbiota in an organ-dependent effect.


Subject(s)
Microbiota , Penaeidae , Agriculture , Animal Feed/analysis , Animals , Diet/veterinary , Oligosaccharides/metabolism , Penaeidae/genetics , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism
6.
Toxins (Basel) ; 13(9)2021 09 17.
Article in English | MEDLINE | ID: mdl-34564668

ABSTRACT

Glutathione S-transferases are a family of detoxifying enzymes that catalyze the conjugation of reduced glutathione (GSH) with different xenobiotic compounds using either Ser, Tyr, or Cys as a primary catalytic residue. We identified a novel GST in the genome of the shrimp pathogen V. parahaemolyticus FIM- S1708+, a bacterial strain associated with Acute Hepatopancreatic Necrosis Disease (AHPND)/Early Mortality Syndrome (EMS) in cultured shrimp. This new GST class was named Gtt2. It has an atypical catalytic mechanism in which a water molecule instead of Ser, Tyr, or Cys activates the sulfhydryl group of GSH. The biochemical properties of Gtt2 from Vibrio parahaemolyticus (VpGSTT2) were characterized using kinetic and crystallographic methods. Recombinant VpGSTT2 was enzymatically active using GSH and CDNB as substrates, with a specific activity of 5.7 units/mg. Low affinity for substrates was demonstrated using both Michaelis-Menten kinetics and isothermal titration calorimetry. The crystal structure showed a canonical two-domain structure comprising a glutathione binding G-domain and a hydrophobic ligand H domain. A water molecule was hydrogen-bonded to residues Thr9 and Ser 11, as reported for the yeast Gtt2, suggesting a primary role in the reaction. Molecular docking showed that GSH could bind at the G-site in the vicinity of Ser11. G-site mutationsT9A and S11A were analyzed. S11A retained 30% activity, while T9A/S11A showed no detectable activity. VpGSTT2 was the first bacterial Gtt2 characterized, in which residues Ser11 and Thr9 coordinated a water molecule as part of a catalytic mechanism that was characteristic of yeast GTT2. The GTT2 family has been shown to provide protection against metal toxicity; in some cases, excess heavy metals appear in shrimp ponds presenting AHPND/EMS. Further studies may address whether GTT2 in V. parahaemolyticus pathogenic strains may provide a competitive advantage as a novel detoxification mechanism.


Subject(s)
Glutathione Transferase/genetics , Penaeidae/microbiology , Vibrio parahaemolyticus/genetics , Animals , Genome , Phylogeny , Sequence Analysis
7.
Genes (Basel) ; 12(4)2021 04 13.
Article in English | MEDLINE | ID: mdl-33924545

ABSTRACT

The interplay between shrimp immune system, its environment, and microbiota contributes to the organism's homeostasis and optimal production. The metagenomic composition is typically studied using 16S rDNA profiling by clustering amplicon sequences into operational taxonomic units (OTUs) and, more recently, amplicon sequence variants (ASVs). Establish the compatibility of the taxonomy, α, and ß diversity described by both methods is necessary to compare past and future shrimp microbiota studies. Here, we used identical sequences to survey the V3 16S hypervariable-region using 97% and 99% OTUs and ASVs to assess the hepatopancreas and intestine microbiota of L. vannamei from two ponds under standardized rearing conditions. We found that applying filters to retain clusters >0.1% of the total abundance per sample enabled a consistent taxonomy comparison while preserving >94% of the total reads. The three sets turned comparable at the family level, whereas the 97% identity OTU set produced divergent genus and species profiles. Interestingly, the detection of organ and pond variations was robust to the clustering method's choice, producing comparable α and ß-diversity profiles. For comparisons on shrimp microbiota between past and future studies, we strongly recommend that ASVs be compared at the family level to 97% identity OTUs or use 99% identity OTUs, both using tailored frequency filters.


Subject(s)
Bacteria/classification , Computational Biology/methods , Genetic Variation , Penaeidae/microbiology , Sequence Analysis, DNA/methods , Animals , Bacteria/genetics , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Gastrointestinal Microbiome , Hepatopancreas/microbiology , High-Throughput Nucleotide Sequencing , Microbiota , Penaeidae/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics
8.
PeerJ ; 9: e10506, 2021.
Article in English | MEDLINE | ID: mdl-33505784

ABSTRACT

Vibrio parahaemolyticus (Vp), a typical microorganism inhabiting marine ecosystems, uses pathogenic virulence molecules such as hemolysins to cause bacterial infections of both human and marine animals. The thermolabile hemolysin VpTLH lyses human erythrocytes by a phospholipase B/A2 enzymatic activity in egg-yolk lecithin. However, few studies have been characterized the biochemical properties and the use of VpTLH as a molecular target for natural compounds as an alternative to control Vp infection. Here, we evaluated the biochemical and inhibition parameters of the recombinant VpTLH using enzymatic and hemolytic assays and determined the molecular interactions by in silico docking analysis. The highest enzymatic activity was at pH 8 and 50 °C, and it was inactivated by 20 min at 60 °C with Tm = 50.9 °C. Additionally, the flavonoids quercetin, epigallocatechin gallate, and morin inhibited the VpTLH activity with IC50 values of 4.5 µM, 6.3 µM, and 9.9 µM, respectively; while phenolics acids were not effective inhibitors for this enzyme. Boltzmann and Arrhenius equation analysis indicate that VpTLH is a thermolabile enzyme. The inhibition of both enzymatic and hemolytic activities by flavonoids agrees with molecular docking, suggesting that flavonoids could interact with the active site's amino acids. Future research is necessary to evaluate the antibacterial activity of flavonoids against Vp in vivo.

9.
Dev Comp Immunol ; 113: 103807, 2020 12.
Article in English | MEDLINE | ID: mdl-32735961

ABSTRACT

Lysozymes play a key role in innate immune response to bacterial pathogens, catalyzing the hydrolysis of the peptidoglycan layer of bacterial cell walls. In this study, the genes encoding the c-type (TmLyzc) and g-type (TmLyzg) lysozymes from Totoaba macdonaldi were cloned and characterized. The cDNA sequences of TmLyzg and TmLyzc were 582 and 432 bp, encoding polypeptides of 193 and 143 amino acids, respectively. Amino acid sequences of these lysozymes shared high identity (60-90%) with their counterparts of other teleosts and showed conserved functional-structural signatures of the lysozyme superfamily. Phylogenetic analysis indicated a close relationship with their vertebrate homologues but distinct evolutionary paths for each lysozyme. Expression analysis by qRT-PCR revealed that TmLyzc was expressed in stomach and pyloric caeca, while TmLyzg was highly expressed in stomach and heart. These results suggest that both lysozymes play important roles in defense of totoaba against bacterial infections or as digestive enzyme.


Subject(s)
Anti-Bacterial Agents/metabolism , Fish Proteins/genetics , Fishes/immunology , Gastric Mucosa/metabolism , Muramidase/genetics , Myocardium/metabolism , Animals , Chickens/genetics , Cloning, Molecular , Digestion , Evolution, Molecular , Fish Proteins/metabolism , Geese/genetics , Gene Expression Profiling , Immunity, Innate , Muramidase/metabolism , Organ Specificity , Phylogeny , Sequence Alignment
10.
Microorganisms ; 8(1)2020 Jan 17.
Article in English | MEDLINE | ID: mdl-31963525

ABSTRACT

The shrimp has become the most valuable traded marine product in the world, and its microbiota plays an essential role in its development and overall health status. Massive high-throughput sequencing techniques using several hypervariable regions of the 16S rRNA gene are broadly applied in shrimp microbiota studies. However, it is essential to consider that the use of different hypervariable regions can influence the obtained data and the interpretation of the results. The present study compares the shrimp microbiota structure and composition obtained by three types of amplicons: one spanning both the V3 and V4 hypervariable regions (V3V4), one for the V3 region only (V3), and one for the V4 region only (V4) using the same experimental and bioinformatics protocols. Twenty-four samples from hepatopancreas and intestine were sequenced and evaluated using the GreenGenes and silva reference databases for clustering and taxonomic classification. In general, the V3V4 regions resulted in higher richness and diversity, followed by V3 and V4. All three regions establish an apparent clustering effect that discriminates between the two analyzed organs and describe a higher richness for the intestine and a higher diversity for the hepatopancreas samples. Proteobacteria was the most abundant phyla overall, and Cyanobacteria was more common in the intestine, whereas Firmicutes and Actinobacteria were more prevalent in hepatopancreas samples. Also, the genus Vibrio was significantly abundant in the intestine, as well as Acinetobacter and Pseudomonas in the hepatopancreas suggesting these taxa as markers for their respective organs independently of the sequenced region. The use of a single hypervariable region such as V3 may be a low-cost alternative that enables an adequate description of the shrimp microbiota, allowing for the development of strategies to continually monitor the microbial communities and detect changes that could indicate susceptibility to pathogens under real aquaculture conditions while the use of the full V3V4 regions can contribute to a more in-depth characterization of the microbial composition.

11.
Protein Pept Lett ; 26(3): 170-175, 2019.
Article in English | MEDLINE | ID: mdl-30338728

ABSTRACT

BACKGROUND: Trypsin from fish species is considered as a cold-adapted enzyme that may find potential biotechnological applications. In this work, the recombinant expression, refolding and activation of Trypsin I (TryI) from Monterey sardine (Sardinops sagax caerulea) are reported. METHODS: TryI was overexpressed in Escherichia coli BL21 as a fusion protein of trypsinogen with thioredoxin. Refolding of trypsinogen I was achieved by dialysis of bacterial inclusion bodies with a recovery of 16.32 mg per liter of Luria broth medium. RESULTS: Before activation, the trypsinogen fusion protein did not show trypsin activity. Trypsinogen I was activated by adding 0.002 U of native TryI purified from the sardine pyloric caeca (nonrecombinant). The activated recombinant trypsin showed three times more activity than the nonrecombinant trypsin alone. CONCLUSION: The described protocol allowed obtaining sufficient amounts of recombinant TryI from Monterey sardine fish for further biochemical and biophysical characterization of its coldadaptation parameters.


Subject(s)
Escherichia coli , Fish Proteins , Fishes/genetics , Inclusion Bodies , Protein Refolding , Trypsin , Animals , Escherichia coli/genetics , Escherichia coli/metabolism , Fish Proteins/biosynthesis , Fish Proteins/chemistry , Fish Proteins/genetics , Fish Proteins/isolation & purification , Inclusion Bodies/chemistry , Inclusion Bodies/genetics , Inclusion Bodies/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Trypsin/biosynthesis , Trypsin/chemistry , Trypsin/genetics , Trypsin/isolation & purification
12.
Molecules ; 23(11)2018 Oct 30.
Article in English | MEDLINE | ID: mdl-30380712

ABSTRACT

The objective of this study was to evaluate the effect of combining catechin, protocatechuic, and vanillic acids against planktonic growing, adhesion, and biofilm eradication of uropathogenic Escherichia coli (UPEC), as well as antioxidant agents. The minimum inhibitory concentrations (MIC) of protocatechuic, vanillic acids and catechin against the growth of planktonic bacteria were 12.98, 11.80, and 13.78 mM, respectively. Mixing 1.62 mM protocatechuic acid + 0.74 mM vanillic acid + 0.05 mM catechin resulted in a synergistic effect acting as an MIC. Similarly, the minimum concentrations of phenolic compounds to prevent UPEC adhesion and biofilm formation (MBIC) were 11.03 and 7.13 mM of protocatechuic and vanillic acids, respectively, whereas no MBIC of catechin was found. However, combinations of 1.62 mM protocatechuic acid + 0.74 mM vanillic acid + 0.05 mM catechin showed a synergistic effect acting as MBIC. On the other hand, the minimum concentrations to eradicate biofilms (MBEC) were 25.95 and 23.78 mM, respectively. The combination of 3.20 mM protocatechuic acid, 2.97 mM vanillic acid, and 1.72 mM catechin eradicated pre-formed biofilms. The antioxidant capacity of the combination of phenolics was higher than the expected theoretical values, indicating synergism by the DPPH•, ABTS, and FRAP assays. Effective concentrations of catechin, protocatechuic, and vanillic acids were reduced from 8 to 1378 times when combined. In contrast, the antibiotic nitrofurantoin was not effective in eradicating biofilms from silicone surfaces. In conclusion, the mixture of phenolic compounds was more effective in preventing cell adhesion and eradicating pre-formed biofilms of uropathogenic E. coli than single compounds and nitrofurantoin, and showed antioxidant synergy.


Subject(s)
Anti-Bacterial Agents/pharmacology , Catechin/pharmacology , Hydroxybenzoates/pharmacology , Vanillic Acid/pharmacology , Anti-Bacterial Agents/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Biofilms/drug effects , Catechin/chemistry , Humans , Hydroxybenzoates/chemistry , Microbial Sensitivity Tests , Plankton/drug effects , Uropathogenic Escherichia coli/drug effects , Uropathogenic Escherichia coli/pathogenicity , Vanillic Acid/chemistry
13.
PeerJ ; 6: e5023, 2018.
Article in English | MEDLINE | ID: mdl-29922516

ABSTRACT

Thymidylate synthase (TS, E.C. 2.1.1.45) is a crucial enzyme for de novo deoxythymidine monophosphate (dTMP) biosynthesis. The gene for this enzyme is thyA, which encodes the folate-dependent TS that converts deoxyuridine monophosphate group (dUMP) into (dTMP) using the cofactor 5,10-methylenetetrahydrofolate (mTHF) as a carbon donor. We identified the thyA gene in the genome of the Vibrio parahaemolyticus strain FIM-S1708+ that is innocuous to humans but pathogenic to crustaceans. Surprisingly, we found changes in the residues that bind the substrate dUMP and mTHF, previously postulated as invariant among all TSs known (Finer-Moore, Santi & Stroud, 2003). Interestingly, those amino acid changes were also found in a clade of microorganisms that contains Vibrionales, Alteromonadales, Aeromonadales, and Pasteurellales (VAAP) from the Gammaproteobacteria class. In this work, we studied the biochemical properties of recombinant TS from V. parahemolyticus FIM-S1708+ (VpTS) to address the natural changes in the TS amino acid sequence of the VAAP clade. Interestingly, the Km for dUMP was 27.3 ± 4.3 µM, about one-fold larger compared to other TSs. The Km for mTHF was 96.3 ± 18 µM, about three- to five-fold larger compared to other species, suggesting also loss of affinity. Thus, the catalytic efficiency was between one or two orders of magnitude smaller for both substrates. We used trimethoprim, a common antibiotic that targets both TS and DHFR for inhibition studies. The IC50 values obtained were high compared to other results in the literature. Nonetheless, this molecule could be a lead for the design antibiotics towards pathogens from the VAAP clade. Overall, the experimental results also suggest that in the VAAP clade the nucleotide salvage pathway is important and should be investigated, since the de novo dTMP synthesis appears to be compromised by a less efficient thymidylate synthase.

14.
Mar Genomics ; 37: 74-81, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28923556

ABSTRACT

Palaemonetes argentinus, an abundant freshwater prawn species in the northern and central region of Argentina, has been used as a bioindicator of environmental pollutants as it displays a very high sensitivity to pollutants exposure. Despite their extraordinary ecological relevance, a lack of genomic information has hindered a more thorough understanding of the molecular mechanisms potentially involved in detoxification processes of this species. Thus, transcriptomic profiling studies represent a promising approach to overcome the limitations imposed by the lack of extensive genomic resources for P. argentinus, and may improve the understanding of its physiological and molecular response triggered by pollutants. This work represents the first comprehensive transcriptome-based characterization of the non-model species P. argentinus to generate functional genomic annotations and provides valuable resources for future genetic studies. Trinity de novo assembly consisted of 24,738 transcripts with high representation of detoxification (phase I and II), anti-oxidation, osmoregulation pathways and DNA replication and bioenergetics. This crustacean transcriptome provides valuable molecular information about detoxification and biochemical processes that could be applied as biomarkers in further ecotoxicology studies.


Subject(s)
Metabolic Detoxication, Phase II/genetics , Metabolic Detoxication, Phase I/genetics , Palaemonidae/genetics , Palaemonidae/metabolism , Transcriptome , Animals , Argentina , Biomarkers/analysis
15.
Sci Rep ; 7(1): 11783, 2017 09 18.
Article in English | MEDLINE | ID: mdl-28924190

ABSTRACT

Crustaceans form the second largest subphylum on Earth, which includes Litopeneaus vannamei (Pacific whiteleg shrimp), one of the most cultured shrimp worldwide. Despite efforts to study the shrimp microbiota, little is known about it from shrimp obtained from the open sea and the role that aquaculture plays in microbiota remodeling. Here, the microbiota from the hepatopancreas and intestine of wild type (wt) and aquacultured whiteleg shrimp and pond sediment from hatcheries were characterized using sequencing of seven hypervariable regions of the 16S rRNA gene. Cultured shrimp with AHPND/EMS disease symptoms were also included. We found that (i) microbiota and their predicted metagenomic functions were different between wt and cultured shrimp; (ii) independent of the shrimp source, the microbiota of the hepatopancreas and intestine was different; (iii) the microbial diversity between the sediment and intestines of cultured shrimp was similar; and (iv) associated to an early development of AHPND/EMS disease, we found changes in the microbiome and the appearance of disease-specific bacteria. Notably, under cultured conditions, we identified bacterial taxa enriched in healthy shrimp, such as Faecalibacterium prausnitzii and Pantoea agglomerans, and communities enriched in diseased shrimp, such as Aeromonas taiwanensis, Simiduia agarivorans and Photobacterium angustum.


Subject(s)
Aquaculture , Bacteria , Gastrointestinal Microbiome , Penaeidae/microbiology , Animals , Bacteria/classification , Bacteria/genetics , Metagenomics , Penaeidae/growth & development
16.
PeerJ ; 5: e3787, 2017.
Article in English | MEDLINE | ID: mdl-28924503

ABSTRACT

Energy buffering systems are key for homeostasis during variations in energy supply. Spiders are the most important predators for insects and therefore key in terrestrial ecosystems. From biomedical interest, spiders are important for their venoms and as a source of potent allergens, such as arginine kinase (AK, EC 2.7.3.3). AK is an enzyme crucial for energy metabolism, keeping the pool of phosphagens in invertebrates, and also an allergen for humans. In this work, we studied AK from the Argentininan spider Polybetes pythagoricus (PpAK), from its complementary DNA to the crystal structure. The PpAK cDNA from muscle was cloned, and it is comprised of 1068 nucleotides that encode a 384-amino acids protein, similar to other invertebrate AKs. The apparent Michaelis-Menten kinetic constant (Km ) was 1.7 mM with a kcat of 75 s-1. Two crystal structures are presented, the apoPvAK and PpAK bound to arginine, both in the open conformation with the active site lid (residues 310-320) completely disordered. The guanidino group binding site in the apo structure appears to be organized to accept the arginine substrate. Finally, these results contribute to knowledge of mechanistic details of the function of arginine kinase.

17.
Biochimie ; 135: 35-45, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28104507

ABSTRACT

We studied a mango glutathione S-transferase (GST) (Mangifera indica) bound to glutathione (GSH) and S-hexyl glutathione (GSX). This GST Tau class (MiGSTU) had a molecular mass of 25.5 kDa. MiGSTU Michaelis-Menten kinetic constants were determined for their substrates obtaining a Km, Vmax and kcat for CDNB of 0.792 mM, 80.58 mM min-1 and 68.49 s-1 respectively and 0.693 mM, 105.32 mM min-1 and 89.57 s-1, for reduced GSH respectively. MiGSTU had a micromolar affinity towards GSH (5.2 µM) or GSX (7.8 µM). The crystal structure of the MiGSTU in apo or bound to GSH or GSX generated a model that explains the thermodynamic signatures of binding and showed the importance of enthalpic-entropic compensation in ligand binding to Tau-class GST enzymes.


Subject(s)
Glutathione Transferase/metabolism , Mangifera/enzymology , Glutathione/metabolism , Glutathione Transferase/chemistry , Kinetics , Protein Binding
18.
Biochim Biophys Acta ; 1864(12): 1696-1706, 2016 12.
Article in English | MEDLINE | ID: mdl-27614148

ABSTRACT

Triosephosphate isomerase (TIM; EC 5.3.1.1) is a key enzyme involved in glycolysis and gluconeogenesis. Glycolysis is one of the most regulated metabolic pathways, however little is known about the structural mechanisms for its regulation in non-model organisms, like crustaceans. To understand the structure and function of this enzyme in invertebrates, we obtained the crystal structure of triosephosphate isomerase from the marine Pacific whiteleg shrimp (Litopenaeus vannamei, LvTIM) in complex with its inhibitor 2-phosphogyceric acid (2-PG) at 1.7Å resolution. LvTIM assembles as a homodimer with residues 166-176 covering the active site and residue Glu166 interacting with the inhibitor. We found that LvTIM is the least stable TIM characterized to date, with the lowest range of melting temperatures, and with the lowest activation enthalpy associated with the thermal unfolding process reported. In TIMs dimer stabilization is maintained by an interaction of loop 3 by a set of hydrophobic contacts between subunits. Within these contacts, the side chain of a hydrophobic residue of one subunit fits into a cavity created by a set of hydrophobic residues in the neighboring subunit, via a "ball and socket" interaction. LvTIM presents a Cys47 at the "ball" inter-subunit contact indicating that the character of this residue is responsible for the decrease in dimer stability. Mutational studies show that this residue plays a role in dimer stability but is not a solely determinant for dimer formation.


Subject(s)
Penaeidae/enzymology , Triose-Phosphate Isomerase/chemistry , Amino Acid Sequence , Animals , Crystallography, X-Ray , Enzyme Stability , Kinetics , Models, Molecular , Penaeidae/genetics , Protein Denaturation , Protein Multimerization , Protein Structure, Quaternary , Triose-Phosphate Isomerase/genetics , Triose-Phosphate Isomerase/metabolism
19.
J Bioenerg Biomembr ; 48(3): 301-8, 2016 06.
Article in English | MEDLINE | ID: mdl-27072556

ABSTRACT

Arginine kinase (AK) (ATP: L-arginine phosphotransferase, E.C. 2.7.3.3) catalyzes the reversible transfer of ATP γ-phosphate group to L-arginine to synthetize phospho-arginine as a high-energy storage. Previous studies suggest additional roles for AK in cellular processes. Since AK is found only in invertebrates and it is homologous to creatine kinase from vertebrates, the objective of this work was to demonstrate nucleoside diphosphate kinase-like activity for shrimp AK. For this, AK from marine shrimp Litopenaeus vannamei (LvAK) was purified and its activity was assayed for phosphorylation of TDP using ATP as phosphate donor. Moreover, by using high-pressure liquid chromatography (HPLC) the phosphate transfer reaction was followed. Also, LvAK tryptophan fluorescence emission changes were detected by dTDP titration, suggesting that the hydrophobic environment of Trp 221, which is located in the top of the active site, is perturbed upon dTDP binding. The kinetic constants for both substrates Arg and dTDP were calculated by isothermal titration calorimetry (ITC). Besides, docking calculations suggested that dTDP could bind LvAK in the same cavity where ATP bind, and LvAK basic residues (Arg124, 126 and 309) stabilize the dTDP phosphate groups and the pyrimidine base interact with His284 and Ser122. These results suggest that LvAK bind and phosphorylate dTDP being ATP the phosphate donor, thus describing a novel alternate nucleoside diphosphate kinase-like activity for this enzyme.


Subject(s)
Arginine Kinase/metabolism , Nucleoside-Diphosphate Kinase/metabolism , Penaeidae/enzymology , Thymine Nucleotides/metabolism , Adenosine Triphosphate/metabolism , Animals , Molecular Docking Simulation , Phosphorylation
20.
Sci Rep ; 4: 7081, 2014 Nov 25.
Article in English | MEDLINE | ID: mdl-25420880

ABSTRACT

We present a new transcriptome assembly of the Pacific whiteleg shrimp (Litopenaeus vannamei), the species most farmed for human consumption. Its functional annotation, a substantial improvement over previous ones, is provided freely. RNA-Seq with Illumina HiSeq technology was used to analyze samples extracted from shrimp abdominal muscle, hepatopancreas, gills and pleopods. We used the Trinity and Trinotate software suites for transcriptome assembly and annotation, respectively. The quality of this assembly and the affiliated targeted homology searches greatly enrich the curated transcripts currently available in public databases for this species. Comparison with the model arthropod Daphnia allows some insights into defining characteristics of decapod crustaceans. This large-scale gene discovery gives the broadest depth yet to the annotated transcriptome of this important species and should be of value to ongoing genomics and immunogenetic resistance studies in this shrimp of paramount global economic importance.


Subject(s)
Aquaculture , Penaeidae/genetics , Penaeidae/metabolism , Seafood , Transcriptome , Algorithms , Animals , Crustacea/genetics , Crustacea/metabolism , DNA Replication/genetics , Daphnia/metabolism , Databases, Genetic , Genomics , Immune System/metabolism , Sequence Analysis, RNA , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...