Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Org Chem ; 89(1): 756-760, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38109189

ABSTRACT

The syntheses of hexabrominated closo-carborates decorated with different chiral Binol-derived phosphonates and their conjugate acids are described. X-ray diffraction analysis reveals a polymeric structure for the sodium salt with the anionic units connected by [B-Br-Na-O═P]+ linkages. For the acid, coordination of the proton to the phosphonate's P═O oxygen atom is assumed. The pKa value was estimated by combining experiments and computations. Application of these Brønsted acids as chiral catalysts in an imino-ene and a Mukaiyama-Mannich reaction was moderately successful.

2.
Chemistry ; 29(2): e202202953, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36161384

ABSTRACT

The linking of phosphoric acids via covalent or mechanical bonds has proven to be a successful strategy for the design of novel organocatalysts. Here, we present the first systematic investigation of singly-linked and macrocyclic bisphosphoric acids, including their synthesis and their application in phase-transfer and Brønsted acid catalysis. We found that the novel bisphosphoric acids show dramatically increased enantioselectivities in comparison to their monophosphoric acid analogues. However, the nature, length and number of linkers has a profound influence on the enantioselectivities. In the asymmetric dearomative fluorination via phase-transfer catalysis, bisphosphoric acids with a single, rigid bisalkyne-linker give the best results with moderate to good enantiomeric excesses. In contrast, bisphosphoric acids with flexible linkers give excellent enantioselectivities in the transfer-hydrogenation of quinolines via cooperative Brønsted acid catalysis. In the latter case, sufficiently long linkers are needed for high stereoselectivities, as found experimentally and supported by DFT calculations.


Subject(s)
Phosphoric Acids , Phosphoric Acids/chemistry , Hydrogenation , Catalysis , Stereoisomerism
3.
Chemistry ; 28(42): e202200974, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35510557

ABSTRACT

Hypervalent bromine(III) reagents possess a higher electrophilicity and a stronger oxidizing power compared to their iodine(III) counterparts. Despite the superior reactivity, bromine(III) reagents have a reputation of hard-to-control and difficult-to-synthesize compounds. This is partly due to their low stability, and partly because their synthesis typically relies on the use of the toxic and highly reactive BrF3 as a precursor. Recently, we proposed chelation-stabilized hypervalent bromine(III) compounds as a possible solution to both problems. First, they can be conveniently prepared by electro-oxidation of the corresponding bromoarenes. Second, the chelation endows bromine(III) species with increased stability while retaining sufficient reactivity, comparable to that of iodine(III) counterparts. Finally, their intrinsic reactivity can be unlocked in the presence of acids. Herein, an in-depth mechanistic study of both the electrochemical generation and the reactivity of the bromine(III) compounds is disclosed, with implications for known applications and future developments in the field.

4.
Chemphyschem ; 22(22): 2329-2335, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34397136

ABSTRACT

The influence of fluorination on the acid-base properties and the capacity of structurally related 6-5 bicyclic compounds - 1,3-benzodiazole 1, 1,2,3-benzotriazole 2 and 2,1,3-benzoselenadiazole 3 to σ-hole interactions, i. e. hydrogen (1 and 2) and chalcogen (3) bondings, is studied experimentally and computationally. The tetrafluorination increases the Brønsted acidity of the diazole and triazole scaffolds and the Lewis acidity of selenadiazole scaffold decreases the basicity. Increased Brønsted acidity facilitates anion binding via the formation of hydrogen bonds; particularly, tetrafluorinated derivative of 1 (compound 4) binds Cl- . Increased Lewis acidity of tetrafluorinated derivative of 3 (compound 10), however, is not enough for binding with Cl- and F- via chalcogen bonds in contrast to previously studied Te analog of 10. It is suggested that the maximum positive values of molecular electrostatic potential at the σ-holes, VS,max , can be a reasonable metric for design and synthesis of new anion receptors with selenadiazole-diazole/triazole hybrids as a special target. Related chlorinated compounds are also discussed.

5.
Chemistry ; 27(38): 9858-9865, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34036637

ABSTRACT

A novel sterically demanding bis(4-benzhydryl-benzoxazol-2-yl)methane ligand 6 (4-BzhH2 BoxCH2 ) was gained in a straightforward six-step synthesis. Starting from this ligand monomeric [M(4-BzhH2 BoxCH)] (M=Na (7), K (81 )) and dimeric [{M(4-BzhH2 BoxCH)}2 ] (M=K (82 ), Rb (9), Cs (10)) alkali metal complexes were synthesised by deprotonation. Abstraction of the potassium ion of 8 by reaction with 18-crown-6 resulted in the solvent separated ion pair [{(THF)2 K@(18-crown-6)}{bis(4-benzhydryl-benzoxazol-2-yl)methanide}] (11), including the energetically favoured monoanionic (E,E)-(4-BzhH2 BoxCH) ligand. Further reaction of 4-BzhH2 BoxCH2 with three equivalents KH and two equivalents 18-crown-6 yielded polymeric [{(THF)2 K@(18-crown-6)}{K@(18-crown-6)K(4-Bzh BoxCH)}]n (n→∞) (12) containing a trianionic ligand. The neutral ligand and herein reported alkali complexes were characterised by single X-ray analyses identifying the latter as a promising precursor for low-valent main group complexes.

6.
J Am Soc Mass Spectrom ; 32(4): 1080-1095, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33726494

ABSTRACT

Monoaminoacridines (1-, 2-, 3-, 4-, and 9-aminoacridine) were studied for suitability as matrices in the negative ion mode matrix-assisted laser desorption/ionization mass spectrometry (MALDI(-)-MS) analysis of various samples. This is the first study to examine 1-, 2-, and 4-aminoacridine as potential matrix material candidates for MALDI(-)-MS. In addition, spectral (UV-Vis absorption and fluorescence), proton transfer-related (basicity and autoprotolysis), and crystallization properties of these compounds were characterized experimentally and/or computationally. For testing the capabilities of these aminoacridines as matrix materials, four samples related to cultural heritage materials-stearic acid, colophony resin, dyer's madder dye, and a resinous case-study sample from a shipwreck-were analyzed with MALDI(-)-MS. A novel algorithm (implemented as an executable Python script) for MS data analysis was developed to compare the five matrix materials and to help mass spectrometrists rapidly identify peaks originating from the sample and matrix material. It was determined that all five of the studied aminoacridines can successfully be used as matrix materials in MALDI(-)-MS analysis. As an interesting finding, in several cases, the best mass spectra were obtained by using a relatively small amount of matrix material mixed with an excess amount of sample. 3- and 4-aminoacridine outperformed the other aminoacridines in the ease of obtaining acceptable spectra, average number of ions identified in the mass spectra, and low dependence of the sample-to-matrix mass ratio on experimental results.

7.
ACS Org Inorg Au ; 1(2): 43-50, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-36855754

ABSTRACT

Structural diversity in heterocyclic chemistry is key to unlocking new properties and modes of action. In this regard, heterocycles embedding emerging fluorinated substituents hold great promise. Herein is described a strategy to access 2-SF5-(aza)indoles for the first time. The sequence relies on the radical addition of SF5Cl to the alkynyl π-system of 2-ethynyl anilines followed by a cyclization reaction. A telescoped sequence is proposed, making this strategy very appealing and reproducible on a gram scale. Downstream functionalizations are also demonstrated, allowing an easy diversification of N- and C3-positions. Ames test, pK a, log P, and differential scanning calorimetry measurements of several fluorinated 2-Rf-indoles are also disclosed. These studies highlight the strategic advantages that a C2-pentafluorosulfanylated motif impart to a privileged scaffold such as an indole.

8.
J Org Chem ; 85(17): 11297-11308, 2020 09 04.
Article in English | MEDLINE | ID: mdl-32786648

ABSTRACT

Quinolino[7,8-h]quinoline is a superbasic compound, with a pKaH in acetonitrile greater than that of 1,8-bis(dimethylaminonaphthalene) (DMAN), although its synthesis and the synthesis of its derivatives can be problematic. The use of halogen derivatives 4,9-dichloroquinolino[7,8-h]quinoline (16) and 4,9-dibromoquinolino[7,8-h]quinoline (17) as precursors has granted the formation of a range of substituted quinolinoquinolines. The basicity and other properties of quinolinoquinolines can be modified by the inclusion of suitable functionalities. The experimentally obtained pKaH values of quinolino[7,8-h]quinoline derivatives show that N4,N4,N9,N9-tetraethylquinolino[7,8-h]quinoline-4,9-diamine (26) is more superbasic than quinolino[7,8-h]quinoline. Computationally derived pKaH values of quinolinoquinolines functionalized with dimethylamino (NMe2), 1,1,3,3-tetramethylguanidino (N═C(NMe2)2) or N,N,N',N',N″,N″-hexamethylphosphorimidic triamido (N═P(NMe2)3) groups are significantly greater than those of quinolino[7,8-h]quinoline. Overall, electron-donating functionalities are observed to increase the basicity of the quinolinoquinoline moiety, while the substitution of electron-withdrawing groups lowers the basicity.

9.
Angew Chem Int Ed Engl ; 59(5): 2028-2032, 2020 01 27.
Article in English | MEDLINE | ID: mdl-31710767

ABSTRACT

Acyclic ketone-derived oxocarbenium ions are involved as intermediates in numerous reactions that provide valuable products, however, they have thus far eluded efforts aimed at asymmetric catalysis. We report that a readily accessible chiral carboxylic acid catalyst exerts control over asymmetric cyclizations of acyclic ketone-derived trisubstituted oxocarbenium ions, thereby providing access to highly enantioenriched dihydropyran products containing a tetrasubstituted stereogenic center. The high acidity of the carboxylic acid catalyst, which exceeds that of the well-known chiral phosphoric acid catalyst TRIP, is largely derived from stabilization of the carboxylate conjugate base through intramolecular anion-binding to a thiourea site.

10.
Chemistry ; 24(63): 16851-16856, 2018 Nov 13.
Article in English | MEDLINE | ID: mdl-30156349

ABSTRACT

The introduction of a triphenylborate group at the 4-position of 2,6-dimesitylpyridine afforded a sterically demanding anionic pyridine. The charge introduced through the borate group drastically increases its basicity and measurement of its pKa value (18.46) revealed a significantly higher value than that of 4-dimethylaminopyridine (17.95). THF ring-opening was observed upon treating its lithium salt with TMSCl, which demonstrates its high nucleophilicity. The mesityl groups at the 2,6-positions are oriented orthogonal to the pyridine ring and do not block the nitrogen atom of the pyridine. The reaction of the protonated pyridine with Li[BH4 ] yielded the corresponding Lewis acid/base adduct, which shows that the title compound can be used as a monodentate ligand in coordination chemistry. The crystal structures of all the compounds presented in this work are reported.

11.
J Org Chem ; 78(16): 7796-808, 2013 Aug 16.
Article in English | MEDLINE | ID: mdl-23848503

ABSTRACT

An approach for accurate and comparable measurement of host-guest binding affinities is introduced whereby differences in binding strength (ΔlogKass values) are measured between two host molecules toward a particular guest under identical solvent conditions. Measuring differences instead of absolute values enables obtaining highly accurate results, because many of the uncertainty sources (the solvation/association state of the guest in solution, deviations in solvent composition, etc.) cancel out. As a proof of concept, this method was applied to the measurement of the binding strength of 28 synthetic anion receptors toward acetate in acetonitrile containing 0.5% water. The receptors included differently substituted indolocarbazoles, ureas, thioureas, and some others. Possible deprotonation of more acidic receptors of each compound class by acetate was checked by measuring their acidities (ΔpKa values) relative to acetic acid in the same solvent. A self-consistent (consistency standard deviation 0.04 log units) binding affinity scale ranging for around 2.7 log units was constructed from the results. Absolute logKass values were found by anchoring the scale to the absolute logKass values of two receptor molecules, determined independently by direct measurements. This new approach is expected to find use in accurate quantification of a wide range of binding processes relevant to supramolecular chemistry.


Subject(s)
Carbazoles/chemistry , Indoles/chemistry , Macromolecular Substances/chemistry , Urea/chemistry , Binding Sites , Carbazoles/chemical synthesis , Indoles/chemical synthesis , Macromolecular Substances/chemical synthesis , Molecular Structure , Urea/analogs & derivatives , Urea/chemical synthesis
12.
Chem Commun (Camb) ; 48(85): 10490-2, 2012 Nov 04.
Article in English | MEDLINE | ID: mdl-22990382

ABSTRACT

A "V"-shaped Hammett plot shows that resonance-assisted hydrogen bonding does not dictate the strength of the intramolecular hydrogen bond in the E isomers of hydrazone-based switches because it involves an aromatic pyridyl ring.

SELECTION OF CITATIONS
SEARCH DETAIL
...