Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Commun ; 10(1): 4439, 2019 09 30.
Article in English | MEDLINE | ID: mdl-31570731

ABSTRACT

Adeno-associated virus (AAV) vectors have shown promising results in preclinical models, but the genomic consequences of transduction with AAV vectors encoding CRISPR-Cas nucleases is still being examined. In this study, we observe high levels of AAV integration (up to 47%) into Cas9-induced double-strand breaks (DSBs) in therapeutically relevant genes in cultured murine neurons, mouse brain, muscle and cochlea. Genome-wide AAV mapping in mouse brain shows no overall increase of AAV integration except at the CRISPR/Cas9 target site. To allow detailed characterization of integration events we engineer a miniature AAV encoding a 465 bp lambda bacteriophage DNA (AAV-λ465), enabling sequencing of the entire integrated vector genome. The integration profile of AAV-465λ in cultured cells display both full-length and fragmented AAV genomes at Cas9 on-target sites. Our data indicate that AAV integration should be recognized as a common outcome for applications that utilize AAV for genome editing.


Subject(s)
CRISPR-Cas Systems , DNA Breaks , Dependovirus/genetics , Gene Editing/methods , Genetic Vectors , Virus Integration/genetics , Animals , Bacteriophage lambda/genetics , Brain , Cell Line , Chromosome Mapping , Clustered Regularly Interspaced Short Palindromic Repeats , Cochlea , Endonucleases , Gene Targeting/methods , Genetic Therapy/methods , Genome , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscles , Neurons/virology , Targeted Gene Repair/methods , Treatment Outcome
2.
Cell Mol Neurobiol ; 38(8): 1539-1550, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30288631

ABSTRACT

In Parkinson's disease and other Lewy body disorders, the propagation of pathology has been accredited to the spreading of extracellular α-synuclein (α-syn). Although the pathogenic mechanisms are not fully understood, cell-to-cell transfer of α-syn via exosomes and other extracellular vesicles (EVs) has been reported. Here, we investigated whether altered molecular properties of α-syn can influence the distribution and secretion of α-syn in human neuroblastoma cells. Different α-syn variants, including α-syn:hemi-Venus and disease-causing mutants, were overexpressed and EVs were isolated from the conditioned medium. Of the secreted α-syn, 0.1-2% was associated with vesicles. The major part of EV α-syn was attached to the outer membrane of vesicles, whereas a smaller fraction was found in their lumen. For α-syn expressed with N-terminal hemi-Venus, the relative levels associated with EVs were higher than for WT α-syn. Moreover, such EV-associated α-syn:hemi-Venus species were internalized in recipient cells to a higher degree than the corresponding free-floating forms. Among the disease-causing mutants, A53T α-syn displayed an increased association with EVs. Taken together, our data suggest that α-syn species with presumably lost physiological functions or altered aggregation properties may shift the cellular processing towards vesicular secretion. Our findings thus lend further support to the tenet that EVs can mediate spreading of harmful α-syn species and thereby contribute to the pathology in α-synucleinopathies.


Subject(s)
Extracellular Vesicles/metabolism , alpha-Synuclein/metabolism , Biomarkers/metabolism , Cells, Cultured , Exosomes/metabolism , Green Fluorescent Proteins/metabolism , Humans , Mutant Proteins/metabolism , tau Proteins/metabolism
3.
Mol Ther Nucleic Acids ; 11: 429-440, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29858078

ABSTRACT

The APPswe (Swedish) mutation in the amyloid precursor protein (APP) gene causes dominantly inherited Alzheimer's disease (AD) as a result of increased ß-secretase cleavage of the amyloid-ß (Aß) precursor protein. This leads to abnormally high Aß levels, not only in brain but also in peripheral tissues of mutation carriers. Here, we selectively disrupted the human mutant APPSW allele using CRISPR. By applying CRISPR/Cas9 from Streptococcus pyogenes, we generated allele-specific deletions of either APPSW or APPWT. As measured by ELISA, conditioned media of targeted patient-derived fibroblasts displayed an approximate 60% reduction in secreted Aß. Next, coding sequences for the APPSW-specific guide RNA (gRNA) and Cas9 were packaged into separate adeno-associated viral (AAV) vectors. Site-specific indel formation was achieved both in primary neurons isolated from APPSW transgenic mouse embryos (Tg2576) and after co-injection of these vectors into hippocampus of adult mice. Taken together, we here present proof-of-concept data that CRISPR/Cas9 can selectively disrupt the APPSW allele both ex vivo and in vivo-and thereby decrease pathogenic Aß. Hence, this system may have the potential to be developed as a tool for gene therapy against AD caused by APPswe and other point mutations associated with increased Aß.

4.
Methods Mol Biol ; 1594: 165-177, 2017.
Article in English | MEDLINE | ID: mdl-28456982

ABSTRACT

Following cellular engulfment, nanoparticles end up in the lysosomes, making them an ideal tool for modifying the lysosomal environment. Here, we describe how acidic nanoparticles can be used to lower the pH of lysosomes in cultured, primary astrocytes and thereby increase their degradation capacity. To guarantee that the cell culture is completely devoid of professional phagocytes, we isolate, expand, and differentiate neural stem cells from embryonic mouse cortex to achieve astrocytes for these experiments. Immunostainings with LAMP2-specific antibodies can be performed to verify the lysosomal localization of the nanoparticles, and the effect on lysosomal acidification can easily be followed with LysoTracker dye.


Subject(s)
Astrocytes/metabolism , Lysosomes/metabolism , Nanoparticles/metabolism , Animals , Cells, Cultured , Lysosomal-Associated Membrane Protein 2/metabolism , Mice
5.
Cell Mol Neurobiol ; 36(3): 437-48, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26993503

ABSTRACT

Fibrillar inclusions of intraneuronal α-synuclein can be detected in certain brain areas from patients with Parkinson's disease (PD) and other disorders with Lewy body pathology. These insoluble protein aggregates do not themselves appear to have a prominent neurotoxic effect, whereas various α-synuclein oligomers appear harmful. Although it is incompletely known how the prefibrillar species may be pathogenic, they have been detected both within and on the outside of exosomes and other extracellular vesicles (EVs), suggesting that such structures may mediate toxic α-synuclein propagation between neurons. Vesicular transfer of α-synuclein may thereby contribute to the hierarchical spreading of pathology seen in the PD brain. Although the regulation of α-synuclein release via EVs is not understood, data suggest that it may involve other PD-related molecules, such as LRRK2 and ATP13A2. Moreover, new evidence indicates that CNS-derived EVs in plasma have the potential to serve as biomarkers for diagnostic purposes. In a recent study, levels of α-synuclein were found to be increased in L1CAM-positive vesicles isolated from plasma of PD patients compared to healthy controls, and follow-up studies will reveal whether α-synuclein in EVs could be developed as a future disease biomarker. Preferentially, toxic prefibrillar α-synuclein oligomers should then be targeted as a biomarker-as evidence suggests that they reflect the disease process more closely than total α-synuclein content. In such studies, it will be essential to adopt stringent EV isolation protocols in order to avoid contamination from the abundant pool of free plasma α-synuclein in different aggregational states.


Subject(s)
Extracellular Vesicles/metabolism , Parkinson Disease/diagnosis , Parkinson Disease/metabolism , alpha-Synuclein/metabolism , Animals , Central Nervous System/metabolism , Central Nervous System/pathology , Humans , Nerve Degeneration/pathology , Parkinson Disease/pathology , Protein Multimerization , alpha-Synuclein/toxicity
6.
Glia ; 63(11): 1997-2009, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26095880

ABSTRACT

Inefficient lysosomal degradation is central in the development of various brain disorders, but the underlying mechanisms and the involvement of different cell types remains elusive. We have previously shown that astrocytes effectively engulf dead cells, but then store, rather than degrade the ingested material. In the present study we identify reasons for the slow digestion and ways to accelerate degradation in primary astrocytes. Our results show that actin-rings surround the phagosomes for long periods of time, which physically inhibit the phago-lysosome fusion. Furthermore, astrocytes express high levels of Rab27a, a protein known to reduce the acidity of lysosomes by Nox2 recruitment, in order to preserve antigens for presentation. We found that Nox2 colocalizes with the ingested material, indicating that it may influence antigen processing also in astrocytes, as they express MHC class II. By inducing long-time acidification of astrocytic lysosomes using acidic nanoparticles, we could increase the digestion of astrocyte-ingested, dead cells. The degradation was, however, normalized over time, indicating that inhibitory pathways are up-regulated in response to the enhanced acidification. GLIA 2015;63:1997-2009.

7.
J Neurotrauma ; 32(4): 244-51, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25087457

ABSTRACT

Traumatic brain injury (TBI) is a heterogeneous disease, and the discovery of diagnostic and prognostic TBI biomarkers is highly desirable in order to individualize patient care. We have previously published a study in which we identified possible TBI biomarkers by mass spectrometry 24 h after injury in a cell culture model. Ezrin-radixin-moesin (ERM) proteins were found abundantly in the medium after trauma, and in the present study we have identified extracellular ezrin as a possible biomarker for brain trauma by analyzing cell culture medium from injured primary neurons and glia and by measuring ezrin in cerebrospinal fluid (CSF) from both rats and humans. Our results show that extracellular ezrin concentration was substantially increased in cell culture medium after injury, but that the intracellular expression of the protein remained stable over time. Controlled cortical impact injured rats showed an increased amount of ezrin in CSF at both day 3 and day 7 after trauma. Moreover, ezrin was present in all ventricular CSF samples from seven humans with severe TBI. In contrast to intracellular ezrin, which is distinctly activated following TBI, extracellular ezrin is nonphosphorylated. This is the first report of extracellular ERM proteins in human and experimental models of TBI, providing a scientific foundation for further assessment of ezrin as a potential biomarker.


Subject(s)
Biomarkers/analysis , Brain Injuries/cerebrospinal fluid , Cytoskeletal Proteins/analysis , Animals , Blotting, Western , Humans , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley
8.
PLoS One ; 8(2): e55983, 2013.
Article in English | MEDLINE | ID: mdl-23409102

ABSTRACT

The complicated secondary molecular and cellular mechanisms following traumatic brain injury (TBI) are still not fully understood. In the present study, we have used mass spectrometry to identify injury specific proteins in an in vitro model of TBI. A standardized injury was induced by scalpel cuts through a mixed cell culture of astrocytes, oligodendrocytes and neurons. Twenty-four hours after the injury, cell culture medium and whole-cell fractions were collected for analysis. We found 53 medium proteins and 46 cell fraction proteins that were specifically expressed after injury and the known function of these proteins was elucidated by an extensive literature survey. By using time-lapse microscopy and immunostainings we could link a large proportion of the proteins to specific cellular processes that occur in response to trauma; including cell death, proliferation, lamellipodia formation, axonal regeneration, actin remodeling, migration and inflammation. A high percentage of the proteins uniquely expressed in the medium after injury were actin-related proteins, which normally are situated intracellularly. We show that two of these, ezrin and moesin, are expressed by astrocytes both in the cell culture model and in mouse brain subjected to experimental TBI. Interestingly, we found many inflammation-related proteins, despite the fact that cells were present in the culture. This study contributes with important knowledge about the cellular responses after trauma and identifies several potential cell-specific biomarkers.


Subject(s)
Brain Injuries/metabolism , Proteome , Actins/metabolism , Animals , Astrocytes/metabolism , Axons/physiology , Brain Injuries/genetics , Brain Injuries/immunology , Cell Culture Techniques , Cell Death , Cell Movement , Cell Proliferation , Cell Survival , Cytoskeletal Proteins/metabolism , Mass Spectrometry , Mice , Microfilament Proteins/metabolism , Nerve Regeneration , Neurons/metabolism , Oligodendroglia/metabolism , Organ Specificity , Phosphorylation , Proteomics
9.
PLoS One ; 7(3): e33090, 2012.
Article in English | MEDLINE | ID: mdl-22461890

ABSTRACT

Clearing of dead cells is a fundamental process to limit tissue damage following brain injury. Engulfment has classically been believed to be performed by professional phagocytes, but recent data show that non-professional phagocytes are highly involved in the removal of cell corpses in various situations. The role of astrocytes in cell clearance following trauma has however not been studied in detail. We have found that astrocytes actively collect and engulf whole dead cells in an in vitro model of brain injury and thereby protect healthy neurons from bystander cell death. Time-lapse experiments showed that migrating neurons that come in contact with free-floating cell corpses induced apoptosis, while neurons that migrate through groups of dead cells, garnered by astrocytes, remain unaffected. Furthermore, apoptotic cells are present within astrocytes in the mouse brain following traumatic brain injury (TBI), indicating a possible role for astrocytes in engulfment of apoptotic cells in vivo. qRT-PCR analysis showed that members of both ced pathways and Megf8 are expressed in the cell culture, indicating their possible involvement in astrocytic engulfment. Moreover, addition of dead cells had a positive effect on the protein expression of MEGF10, an ortholog to CED1, known to initiate phagocytosis by binding to phosphatidylserine. Although cultured astrocytes have an immense capacity for engulfment, seemingly without adverse effects, the ingested material is stored rather than degraded. This finding might explain the multinuclear astrocytes that are found at the lesion site in patients with various brain disorders.


Subject(s)
Apoptosis/physiology , Astrocytes/physiology , Neurons/physiology , Phagocytosis/physiology , Animals , Astrocytes/metabolism , Astrocytes/ultrastructure , Blotting, Western , Brain Injuries/physiopathology , Cell Communication/physiology , Cell Movement/physiology , Cells, Cultured , Female , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Microscopy, Electron, Transmission , Oligodendroglia/physiology , Reverse Transcriptase Polymerase Chain Reaction , Stress, Mechanical
10.
PLoS One ; 7(1): e29771, 2012.
Article in English | MEDLINE | ID: mdl-22235341

ABSTRACT

Identifying external factors that can be used to control neural stem cells division and their differentiation to neurons, astrocytes and oligodendrocytes is of high scientific and clinical interest. Here we show that the Nogo-66 receptor interacting protein LINGO-1 is a potent regulator of neural stem cell maturation to neurons. LINGO-1 is expressed by cortical neural stem cells from E14 mouse embryos and inhibition of LINGO-1 during the first days of neural stem cell differentiation results in decreased neuronal maturation. Compared to neurons in control cultures, which after 6 days of differentiation have long extending neurites, neurons in cultures treated with anti-LINGO-1 antibodies retain an immature, round phenotype with only very short processes. Furthermore, neutralization of LINGO-1 results in a threefold increase in ßIII tubulin-positive cells compared to untreated control cultures. By using BrdU incorporation assays we show that the immature neurons in LINGO-1 neutralized cultures are dividing neuroblasts. In contrast to control cultures, in which no cells were double positive for ßIII tubulin and BrdU, 36% of the neurons in cultures treated with anti-LINGO-1 antibodies were proliferating after three days of differentiation. TUNEL assays revealed that the amount of cells going through apoptosis during the early phase of differentiation was significantly decreased in cultures treated with anti-LINGO-1 antibodies compared to untreated control cultures. Taken together, our results demonstrate a novel role for LINGO-1 in neural stem cell differentiation to neurons and suggest a possibility to use LINGO-1 inhibitors to compensate for neuronal cell loss in the injured brain.


Subject(s)
Antibodies, Neutralizing/immunology , Cell Differentiation , Membrane Proteins/immunology , Membrane Proteins/metabolism , Nerve Tissue Proteins/immunology , Nerve Tissue Proteins/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurons/cytology , Animals , Cell Count , Cell Proliferation , Cell Survival , Gene Expression Regulation , Humans , Mice , Mice, Inbred C57BL , Neurons/metabolism
11.
J Antimicrob Chemother ; 65(9): 1964-71, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20558471

ABSTRACT

OBJECTIVES: To determine the antibacterial activity of small cyclic plant proteins, i.e. cyclotides, and the importance of the surface exposed charged residues for activity. METHODS: Prototypic cyclotides, including the Möbius kalata B1 and the bracelet cycloviolacin O2 (cyO2), were isolated using reversed-phase HPLC. Initial activity screenings were conducted using radial diffusion assays (RDAs) and MIC assays with Salmonella enterica serovar Typhimurium LT2, Escherichia coli and Staphylococcus aureus as test strains. For the most active peptide, cyO2, time-kill kinetics was determined in sodium phosphate buffer (containing 0.03% trypticase soy broth) against several Gram-negative and Gram-positive bacterial species. Charged residues in cyO2 were chemically modified and activity was determined in time-kill assays. RESULTS: CyO2 was the most active cyclotide and efficiently inhibited the growth of S. enterica serovar Typhimurium LT2 and E. coli in RDAs and MIC assays, while the other peptides were less active. In time-kill assays, cyO2 also had bactericidal activity against the Gram-negative species Klebsiella pneumoniae and Pseudomonas aeruginosa. In contrast, none of the cyclotides had high activity against S. aureus. Chemical masking of the charged Glu and Lys residues in cyO2 caused a near total loss of activity against Salmonella, while masking Arg caused a less pronounced activity reduction. CONCLUSIONS: CyO2 is a cyclotide with potent activity against Gram-negative bacteria. The charged residues in cyO2 are all required for optimum antibacterial activity. In combination with its previously demonstrated cytotoxic activity against cancer cells and the general stability of cyclotides, cyO2 provides a promising scaffold for future drug design.


Subject(s)
Cyclotides/pharmacology , Gram-Negative Bacteria/drug effects , Microbial Viability/drug effects , Viola/chemistry , Chromatography, High Pressure Liquid , Cyclotides/isolation & purification , Gram-Positive Bacteria/drug effects , Microbial Sensitivity Tests , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...