Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Cells ; 13(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38727298

ABSTRACT

The antipsychotic drug clozapine demonstrates superior efficacy in treatment-resistant schizophrenia, but its intracellular mode of action is not completely understood. Here, we analysed the effects of clozapine (2.5-20 µM) on metabolic fluxes, cell respiration, and intracellular ATP in human HL60 cells. Some results were confirmed in leukocytes of clozapine-treated patients. Neuroreceptor inhibition under clozapine reduced Akt activation with decreased glucose uptake, thereby inducing ER stress and the unfolded protein response (UPR). Metabolic profiling by liquid-chromatography/mass-spectrometry revealed downregulation of glycolysis and the pentose phosphate pathway, thereby saving glucose to keep the electron transport chain working. Mitochondrial respiration was dampened by upregulation of the F0F1-ATPase inhibitory factor 1 (IF1) leading to 30-40% lower oxygen consumption in HL60 cells. Blocking IF1 expression by cotreatment with epigallocatechin-3-gallate (EGCG) increased apoptosis of HL60 cells. Upregulation of the mitochondrial citrate carrier shifted excess citrate to the cytosol for use in lipogenesis and for storage as triacylglycerol in lipid droplets (LDs). Accordingly, clozapine-treated HL60 cells and leukocytes from clozapine-treated patients contain more LDs than untreated cells. Since mitochondrial disturbances are described in the pathophysiology of schizophrenia, clozapine-induced mitohormesis is an excellent way to escape energy deficits and improve cell survival.


Subject(s)
Clozapine , Mitochondria , Humans , Clozapine/pharmacology , Clozapine/analogs & derivatives , Mitochondria/metabolism , Mitochondria/drug effects , HL-60 Cells , Antipsychotic Agents/pharmacology , Apoptosis/drug effects , Adenosine Triphosphate/metabolism , Schizophrenia/drug therapy , Schizophrenia/metabolism , Schizophrenia/pathology , Leukocytes/drug effects , Leukocytes/metabolism , Endoplasmic Reticulum Stress/drug effects , Cellular Reprogramming/drug effects , Metabolic Reprogramming
2.
Ultramicroscopy ; 256: 113866, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37866278

ABSTRACT

A new material characterization technique is emerging for the transmission electron microscope (TEM). Using electron energy-loss spectroscopy, real space mappings of the underlying electronic transitions in the sample, so called orbital maps, can be produced. Thus, unprecedented insight into the electronic orbitals responsible for most of the electrical, magnetic and optical properties of bulk materials can be gained. However, the incredibly demanding requirements on spatial as well as spectral resolution paired with the low signal-to-noise ratio severely limits the day-to-day use of this new technique. With the use of simulations, we strive to alleviate these challenges as much as possible by identifying optimal experimental parameters. In this manner, we investigate representative examples of a transition metal oxide, a material consisting entirely of light elements, and an interface between two different materials to find and compare acceptable ranges for sample thickness, acceleration voltage and electron dose for a scanning probe as well as for parallel illumination.

3.
Microsc Microanal ; 29(Supplement_1): 376, 2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37613331
4.
Ultramicroscopy ; 240: 113578, 2022 10.
Article in English | MEDLINE | ID: mdl-35785644

ABSTRACT

Digital image comparison and matching brings many advantages over the traditional subjective human comparison, including speed and reproducibility. Despite the existence of an abundance of image difference metrics, most of them are not suited for high-resolution transmission electron microscopy (HRTEM) images. In this work we adopt two image difference metrics not widely used for TEM images. We compare them to subjective evaluation and to the mean squared error in regards to their behaviour regarding image noise pollution. Finally, the methods are applied to and tested by the task of determining precipitate sizes of a model material.


Subject(s)
Image Processing, Computer-Assisted , Humans , Image Processing, Computer-Assisted/methods , Microscopy, Electron, Transmission , Reproducibility of Results
5.
Ultramicroscopy ; 234: 113477, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35123207

ABSTRACT

High-resolution STEM-EELS provides information about the composition of crystalline materials at the atomic scale, though a reliable quantitative chemical analysis is often hampered by zone axis conditions, where neighbouring atomic column intensities contribute to the signal at the probe position. In this work, we present a procedure to determine the concentration of two elements within equivalent atomic columns from EELS elemental maps - in our case barium and lanthanum within the A-sites of Ba1.1La1.9Fe2O7, a second order Ruddlesden-Popper phase. We took advantage of the large changes in the elemental distribution from column to column and introduced a technique, which substitutes inelastic scattering cross sections during the quantification step by using parameters obtained from the actual experiment. We considered channelling / de-channelling effects via inelastic multislice simulations and were thereby able to count occupancies in each atomic column. The EELS quantification results were then used as prior information during the Rietveld refinement in XRD measurements in order to differentiate between barium and lanthanum.

6.
Ultramicroscopy ; 234: 113456, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35032788

ABSTRACT

In this work, a novel method for using a set of electromagnetic quadrupole fields is presented to implement arbitrary unitary operators on a two-state quantum system of electrons. In addition to analytical derivations of the required quadrupole and beam settings which allow an easy direct implementation, numerical simulations of realistic scenarios show the feasibility of the proposed setup. This is expected to pave the way not only for new measurement schemes in electron microscopy and related fields but even one day for the implementation of quantum computing in the electron microscope.

7.
Materials (Basel) ; 14(5)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33803401

ABSTRACT

Energy-loss magnetic chiral dichroism (EMCD) is a versatile method for measuring magnetism down to the atomic scale in transmission electron microscopy (TEM). As the magnetic signal is encoded in the phase of the electron wave, any process distorting this characteristic phase is detrimental for EMCD. For example, elastic scattering gives rise to a complex thickness dependence of the signal. Since the details of elastic scattering depend on the electron's energy, EMCD strongly depends on the acceleration voltage. Here, we quantitatively investigate this dependence in detail, using a combination of theory, numerical simulations, and experimental data. Our formulas enable scientists to optimize the acceleration voltage when performing EMCD experiments.

8.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 6): 1055-1070, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33289717

ABSTRACT

Perovskite-type oxide materials (nominal composition ABO3) are a very versatile class of materials, and their properties are tuneable by varying and doping A- and B-site cations. When the B-site contains easily reducible cations (e.g. Fe, Co or Ni), these can exsolve under reducing conditions and form metallic nanoparticles on the surface. This process is very interesting as a novel route for the preparation of catalysts, since oxide surfaces decorated with finely dispersed catalytically active (often metallic) nanoparticles are a key requirement for excellent catalyst performance. Five doped perovskites, namely, La0.9Ca0.1FeO3-δ, La0.6Ca0.4FeO3-δ, Nd0.9Ca0.1FeO3-δ, Nd0.6Ca0.4FeO3-δ and Nd0.6Ca0.4Fe0.9Co0.1O3-δ, have been synthesized and characterized by experimental and theoretical methods with respect to their crystal structures, electronic properties, morphology and exsolution behaviour. All are capable of exsolving Fe and/or Co. Special emphasis has been placed on the influence of the A-site elemental composition on structure and exsolution capability. Using Nd instead of La increased structural distortions and, at the same time, hindered exsolution. Increasing the amount of Ca doping also increased distortions and additionally changed the Fe oxidation states, resulting in exsolution being shifted to higher temperatures as well. Using the easily reducible element Co as the B-site dopant significantly facilitated the exsolution process and led to much smaller and homogeneously distributed exsolved particles. Therefore, the Co-doped perovskite is a promising material for applications in catalysis, even more so as Co is catalytically a highly active element. The results show that fine-tuning of the perovskite composition will allow tailored exsolution of nanoparticles, which can be used for highly sophisticated catalyst design.

9.
Ultramicroscopy ; 214: 113011, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32408181

ABSTRACT

Cathodoluminescence (CL) has evolved into a standard analytical technique in (scanning) transmission electron microscopy. CL utilizes light excited due to the interactions between the electron-beam and the sample. In the present study we focus on Cˇerenkov radiation. We make use of the fact that the electron transparent specimen acts as a Fabry-Pérot interferometer for coherently emitted radiation. From the wavelength dependent interference pattern of thickness dependent measurements we calculate the refractive index of the studied material. We describe the limits of this approach and compare it with the determination of the refractive index by using valence electron energy loss spectrometry (VEELS).

10.
Acta Crystallogr A Found Adv ; 75(Pt 6): 902-910, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31692465

ABSTRACT

This work studies the elastic scattering behavior of electron vortices when propagating through amorphous samples. A formulation of the multislice approach in cylindrical coordinates is used to theoretically investigate the redistribution of intensity between different angular momentum components due to scattering. To corroborate and elaborate on our theoretical results, extensive numerical simulations are performed on three model systems (Si3N4, Fe0.8B0.2, Pt) for a wide variety of experimental parameters to quantify the purity of the vortices, the net angular momentum transfer, and the variability of the results with respect to the random relative position between the electron beam and the scattering atoms. These results will help scientists to further improve the creation of electron vortices and enhance applications involving them.

11.
Ultramicroscopy ; 177: 26-29, 2017 06.
Article in English | MEDLINE | ID: mdl-28219037

ABSTRACT

Electronic states are responsible for most material properties, including chemical bonds, electrical and thermal conductivity, as well as optical and magnetic properties. Experimentally, however, they remain mostly elusive. Here, we report the real-space mapping of selected transitions between p and d states on the Ångström scale in bulk rutile (TiO2) using electron energy-loss spectrometry (EELS), revealing information on individual bonds between atoms. On the one hand, this enables the experimental verification of theoretical predictions about electronic states. On the other hand, it paves the way for directly investigating electronic states under conditions that are at the limit of the current capabilities of numerical simulations such as, e.g., the electronic states at defects, interfaces, and quantum dots.

12.
Lancet Psychiatry ; 4(1): 23-24, 2017 01.
Article in English | MEDLINE | ID: mdl-28012479
13.
Ultramicroscopy ; 178: 62-80, 2017 07.
Article in English | MEDLINE | ID: mdl-27217350

ABSTRACT

This study sheds light on the prerequisites, possibilities, limitations and interpretation of high-resolution differential phase contrast (DPC) imaging in scanning transmission electron microscopy (STEM). We draw particular attention to the well-established DPC technique based on segmented annular detectors and its relation to recent developments based on pixelated detectors. These employ the expectation value of the momentum transfer as a reliable measure of the angular deflection of the STEM beam induced by an electric field in the specimen. The influence of scattering and propagation of electrons within the specimen is initially discussed separately and then treated in terms of a two-state channeling theory. A detailed simulation study of GaN is presented as a function of specimen thickness and bonding. It is found that bonding effects are rather detectable implicitly, e.g., by characteristics of the momentum flux in areas between the atoms than by directly mapping electric fields and charge densities. For strontium titanate, experimental charge densities are compared with simulations and discussed with respect to experimental artifacts such as scan noise. Finally, we consider practical issues such as figures of merit for spatial and momentum resolution, minimum electron dose, and the mapping of larger-scale, built-in electric fields by virtue of data averaged over a crystal unit cell. We find that the latter is possible for crystals with an inversion center. Concerning the optimal detector design, this study indicates that a sampling of 5mrad per pixel is sufficient in typical applications, corresponding to approximately 10×10 available pixels.

14.
Ultramicroscopy ; 171: 186-194, 2016 12.
Article in English | MEDLINE | ID: mdl-27694036

ABSTRACT

Electron energy-loss magnetic chiral dichroism (EMCD) allows for the quantification of magnetic properties of materials at the nanometer scale. It is shown that with the support of simulations that help to identify the optimal conditions for a successful experiment and upon implementing measurement routines that effectively reduce the noise floor, EMCD measurements can be pushed towards quantitative magnetic measurements even on individual nanoparticles. With this approach, the ratio of orbital to spin magnetic moments for the Fe atoms in a single L10 ordered FePt nanoparticle is determined to be ml/ms=0.08±0.02. This finding is in good quantitative agreement with the results of XMCD ensemble measurements.

15.
Phys Rev Lett ; 117(3): 036801, 2016 Jul 15.
Article in English | MEDLINE | ID: mdl-27472127

ABSTRACT

Transmission electron microscopy has been a promising candidate for mapping atomic orbitals for a long time. Here, we explore its capabilities by a first-principles approach. For the example of defected graphene, exhibiting either an isolated vacancy or a substitutional nitrogen atom, we show that three different kinds of images are to be expected, depending on the orbital character. To judge the feasibility of visualizing orbitals in a real microscope, the effect of the optics' aberrations is simulated. We demonstrate that, by making use of energy filtering, it should indeed be possible to map atomic orbitals in a state-of-the-art transmission electron microscope.

16.
Sci Adv ; 2(3): e1501652, 2016 03.
Article in English | MEDLINE | ID: mdl-27051872

ABSTRACT

Understanding the physical properties of the chain-ladder Sr3Ca11Cu24O41 hole-doped superconductor has been precluded by the unknown hole distribution among chains and ladders. We use electron energy-loss spectrometry (EELS) in a scanning transmission electron microscope (STEM) at atomic resolution to directly separate the contributions of chains and ladders and to unravel the hole distribution from the atomic scale variations of the O-K near-edge structures. The experimental data unambiguously demonstrate that most of the holes lie within the chain layers. A quantitative interpretation supported by inelastic scattering calculations shows that about two holes are located in the ladders, and about four holes in the chains, shedding light on the electronic structure of Sr3Ca11Cu24O41. Combined atomic resolution STEM-EELS and inelastic scattering calculations is demonstrated as a powerful approach toward a quantitative understanding of the electronic structure of cuprate superconductors, offering new possibilities for elucidating their physical properties.


Subject(s)
Metals/chemistry , Nanostructures/chemistry , Superconductivity , Crystallography, X-Ray , Models, Molecular
17.
Z Anorg Allg Chem ; 641(11): 2020-2028, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26924860

ABSTRACT

Nano-grained CoSb3 was prepared by melt-spinning and subsequent spark plasma sintering. The phonon thermal conductivity of skutterudites is known to be sensitive to the kind and the amount of guest atoms. Thus, unfilled CoSb3 can serve as model compound to study the impact of a nanostructure on the thermoelectric properties, especially the phonon thermal conductivity. Therefore, a series of materials was prepared differing only by the cooling speed during the quenching procedure. In contrast to clathrates, the microstructure of meltspun CoSb3 was found to be sensitive to the cooling speed. Although the phonon thermal conductivity, studied by means of Flash and 3ω measurements, was found to be correlated with the grain size, the bulk density of the sintered materials had an even stronger impact. Interestingly, the reduced bulk density did not result in an increased electrical resistivity. The influence of Sb and CoSb2 as foreign phase on the electronic properties of CoSb3 was revealed by a multi-band Hall effect analysis. While CoSb2 increases the charge carrier density, the influence of the highly mobile charge carriers introduced by elemental Sb on the thermoelectric properties of the composite offer an interesting perspective for the preparation of efficient thermoelectric composite materials.

18.
Nat Commun ; 5: 5653, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25501385

ABSTRACT

By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field-induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright-field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms.

19.
J Public Health Res ; 3(2): 275, 2014 Jul 02.
Article in English | MEDLINE | ID: mdl-25343137

ABSTRACT

OVER THE LAST FEW YEARS, THE GERMAN PENSION INSURANCE HAS IMPLEMENTED A NEW METHOD OF QUALITY ASSURANCE FOR INPATIENT REHABILITATION OF CHILDREN AND ADOLESCENTS DIAGNOSED WITH BRONCHIAL ASTHMA, OBESITY, OR ATOPIC DERMATITIS: the so-called rehabilitation treatment standards (RTS). They aim at promoting a comprehensive and evidence-based care in rehabilitation. Furthermore, they are intended to make the therapeutic processes in medical rehabilitation as well as potential deficits more transparent. The development of RTS was composed of five phases during which current scientific evidence, expert knowledge, and patient expectations were included. Their core element is the specification of evidence-based treatment modules that describe a good rehabilitation standard for children diagnosed with bronchial asthma, obesity, or atopic dermatitis. Opportunities and limitations of the RTS as a tool for quality assurance are discussed. Significance for public healthThe German pension insurance's rehabilitation treatment standards (RTS) for inpatient rehabilitation of children and adolescents aim at contributing to a comprehensive and evidence-based care in paediatric rehabilitation. As a core element, they comprise evidence-based treatment modules that describe a good rehabilitation standard for children diagnosed with bronchial asthma, obesity, or atopic dermatitis. Although the RTS have been developed for the specific context of the German health care system, they may be referred to as a more general starting point regarding the development of health care and quality assurance standards in child/adolescent medical rehabilitative care.

20.
Beilstein J Nanotechnol ; 5: 210-8, 2014.
Article in English | MEDLINE | ID: mdl-24605288

ABSTRACT

Oriented attachment has created a great debate about the description of crystal growth throughout the last decade. This aggregation-based model has successfully described biomineralization processes as well as forms of inorganic crystal growth, which could not be explained by classical crystal growth theory. Understanding the nanoparticle growth is essential since physical properties, such as the magnetic behavior, are highly dependent on the microstructure, morphology and composition of the inorganic crystals. In this work, the underlying nanoparticle growth of cobalt ferrite nanoparticles in a bioinspired synthesis was studied. Bioinspired syntheses have sparked great interest in recent years due to their ability to influence and alter inorganic crystal growth and therefore tailor properties of nanoparticles. In this synthesis, a short synthetic version of the protein MMS6, involved in nanoparticle formation within magnetotactic bacteria, was used to alter the growth of cobalt ferrite. We demonstrate that the bioinspired nanoparticle growth can be described by the oriented attachment model. The intermediate stages proposed in the theoretical model, including primary-building-block-like substructures as well as mesocrystal-like structures, were observed in HRTEM measurements. These structures display regions of substantial orientation and possess the same shape and size as the resulting discs. An increase in orientation with time was observed in electron diffraction measurements. The change of particle diameter with time agrees with the recently proposed kinetic model for oriented attachment.

SELECTION OF CITATIONS
SEARCH DETAIL
...