Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
EURASIP J Wirel Commun Netw ; 2021(1): 97, 2021.
Article in English | MEDLINE | ID: mdl-33897773

ABSTRACT

Cooperative, connected and automated mobility (CCAM) across Europe requires harmonized solutions to support cross-border seamless operation. The possibility of providing CCAM services across European countries has an enormous innovative business potential. However, the seamless provision of connectivity and the uninterrupted delivery of real-time services pose technical challenges which 5G technologies aim to solve. The situation is particularly challenging given the multi-country, multi-operator, multi-telco-vendor, multi-car-manufacturer and cross-network-generation scenario of any cross-border scenario. Motivated by this, the 5GCroCo project, with a total budget of 17 million Euro and partially funded by the European Commission, aims at validating 5G technologies in the Metz-Merzig-Luxembourg cross-border 5G corridor considering the borders between France, Germany and Luxembourg. The activities of 5GCroCo are organized around three use cases: (1) Tele-operated Driving, (2) high-definition map generation and distribution for automated vehicles and (3) Anticipated Cooperative Collision Avoidance (ACCA). The results of the project help contribute to a true European transnational CCAM. This paper describes the overall objectives of the project, motivated by the discussed challenges of cross-border operation, the use cases along with their requirements, the technical 5G features that will be validated and provides a description of the planned trials within 5GCroCo together with some initial results.

2.
Sensors (Basel) ; 12(12): 16907-19, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23223149

ABSTRACT

The overall aim of our research is to develop a monitoring system for neonatal intensive care units. Long-term EEG monitoring in newborns require that the electrodes don't harm the sensitive skin of the baby, an especially relevant feature for premature babies. Our approach to EEG monitoring is based on several electrodes distributed over the head of the baby, and since the weight of the head always will be on some of them, any type of hard electrode will inevitably cause a pressure-point that can irritate the skin. Therefore, we propose the use of soft conductive textiles as EEG electrodes, primarily for neonates, but also for other kinds of unobtrusive long-term monitoring. In this paper we have tested two types of textile electrodes on five healthy adults and compared them to standard high quality electrodes. The acquired signals were compared with respect to morphology, frequency distribution, spectral coherence, correlation and power line interference sensitivity, and the signals were found to be similar in most respects. The good measurement performance exhibited by the textile electrodes indicates that they are feasible candidates for EEG recording, opening the door for long-term EEG monitoring applications.


Subject(s)
Electrodes , Electroencephalography/instrumentation , Monitoring, Physiologic/methods , Adult , Head , Humans , Infant , Infant, Newborn , Pilot Projects , Textiles
3.
J Neural Eng ; 7(1): 16007, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20075506

ABSTRACT

The overall aim of our research is to develop methods for a monitoring system to be used at neonatal intensive care units. When monitoring a baby, a range of different types of background activity needs to be considered. In this work, we have developed a scheme for automatic classification of background EEG activity in newborn babies. EEG from six full-term babies who were displaying a burst suppression pattern while suffering from the after-effects of asphyxia during birth was included along with EEG from 20 full-term healthy newborn babies. The signals from the healthy babies were divided into four behavioural states: active awake, quiet awake, active sleep and quiet sleep. By using a number of features extracted from the EEG together with Fisher's linear discriminant classifier we have managed to achieve 100% correct classification when separating burst suppression EEG from all four healthy EEG types and 93% true positive classification when separating quiet sleep from the other types. The other three sleep stages could not be classified. When the pathological burst suppression pattern was detected, the analysis was taken one step further and the signal was segmented into burst and suppression, allowing clinically relevant parameters such as suppression length and burst suppression ratio to be calculated. The segmentation of the burst suppression EEG works well, with a probability of error around 4%.


Subject(s)
Asphyxia Neonatorum/physiopathology , Automation , Brain/physiopathology , Electroencephalography/methods , Signal Processing, Computer-Assisted , Brain/physiology , Discriminant Analysis , Humans , Infant, Newborn , Linear Models , Monitoring, Physiologic/methods , Motor Activity/physiology , Probability , Sleep/physiology , Time Factors , Wakefulness/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...