Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Theory Comput ; 14(12): 6574-6585, 2018 Dec 11.
Article in English | MEDLINE | ID: mdl-30359017

ABSTRACT

Introduction of specific point mutations has been an effective strategy in enhancing the thermostability of G-protein-coupled receptors (GPCRs). Our previous work showed that a specific residue position on transmembrane helix 6 (TM6) in class A GPCRs consistently yields thermostable mutants. The crystal structure of human chemokine receptor CCR5 also showed increased thermostability upon mutation of two positions, A233D6.33 and K303E7.59. With the goal of testing the transferability of these two thermostabilizing mutations in other chemokine receptors, we tested the mutations A237D6.33 and R307E7.59 in human CCR3 for thermostability and aggregation properties in detergent solution. Interestingly, the double mutant exhibited a 6-10-fold decrease in the aggregation propensity of the wild-type protein. This is in stark contrast to the two single mutants whose aggregation properties resemble the wild type (WT). Moreover, unlike in CCR5, the two single mutants separately showed no increase in thermostability compared to the wild-type CCR3, while the double-mutant A237D6.33/R307E7.59 confers an increase of 2.6 °C in the melting temperature compared to the WT. Extensive all-atom molecular dynamics (MD) simulations in detergent micelles show that a salt bridge network between transmembrane helices TM3, TM6, and TM7 that is absent in the two single mutants confers stability in the double mutant. The free energy surface of the double mutant shows conformational homogeneity compared to the single mutants. An annular n-dodecyl maltoside detergent layer packs tighter to the hydrophobic surface of the double-mutant CCR3 compared to the single mutants providing additional stability. The purification of other C-C chemokine receptors lacking such stabilizing residues may benefit from the incorporation of these two point mutations.


Subject(s)
Cell Membrane/metabolism , Protein Engineering , Receptors, CCR3/chemistry , Receptors, CCR3/metabolism , Temperature , Humans , Hydrogen Bonding , Mutation , Protein Conformation, alpha-Helical , Protein Stability , Receptors, CCR3/genetics
2.
Biochemistry ; 52(20): 3523-31, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23621087

ABSTRACT

Glucokinase (GK) plays a major role in the regulation of blood glucose homeostasis in both the liver and the pancreas. In the liver, GK is controlled by the GK regulatory protein (GKRP). GKRP in turn is activated by fructose 6-phosphate (F6P) and inactivated by fructose 1-phosphate (F1P). Disrupting the GK-GKRP complex increases the activity of GK in the cytosol and is considered an attractive concept for the regulation of blood glucose. We have determined the crystal structure of GKRP in its inactive F1P-bound form. The binding site for F1P is located deeply buried at a domain interface, and H-D exchange experiments confirmed that F1P and F6P compete for this site. The structure of the inactive GKRP-F1P complex provides a starting point for understanding the mechanism of fructose phosphate-dependent GK regulation at an atomic level.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Binding Sites , Crystallography, X-Ray , Fructosephosphates/chemistry , Fructosephosphates/metabolism , Humans , Models, Molecular , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...