Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 511, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38177208

ABSTRACT

Reliable measurement of the size of polydisperse, complex-shaped commercial nanopowders is a difficult but necessary task, e.g., for regulatory requirements and toxicity risk assessment. Suitable methods exist for the accurate characterization of the size of non-aggregated, stabilized, spherical and monodisperse nanoparticles. In contrast, industrial nanoscale powders usually require dedicated sample preparation procedures developed for the analysis method of choice. These nano-powders tend to agglomerate and/or aggregate, a behavior which in combination with an innate broad particle size distribution and irregular shape often significantly alters the achievable accuracy of the measured size parameters. The present study systematically tests two commercially available nanoscale powders using different sample preparation methods for correlative analysis by scanning electron microscopy, dynamic light scattering, Brunauer-Emmet-Teller method and differential mobility analysis. One focus was set on the sample preparation by embedding nanoparticles in carbon-based hot-mounting resin. Literature on this topic is scarce and the accuracy of the data extracted from cross sections of these particles is unclearly stated. In this paper systematic simulations on the deviation of the size parameters of well-defined series of nanoparticles with different shapes from the nominal value were carried out and the contributing factors are discussed.

2.
Soft Matter ; 18(48): 9249-9262, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36440620

ABSTRACT

Responsive aqueous foams are very interesting from a fundamental point of view and for various applications like foam flooding or foam flotation. In this study thermoresponsive microgels (MGs) made from poly(N-isopropyl-acrylamide) (PNIPAM) with varying cross-linker content, are used as foam stabilisers. The foams obtained are thermoresponsive and can be destabilised by increasing the temperature. The structuring of MGs inside the foam films is investigated with small-angle neutron scattering and in a thin film pressure balance. The foam films are inhomogeneous and form a network-like structure, in which thin and MG depleted zones with a thickness of ca. 30 nm are interspersed in a continuous network of thick MG containing areas with a thickness of several 100 nm. The thickness of this continuous network is related to the elastic modulus of the individual MGs, which was determined by atomic force microscopy indentation experiments. Both, the elastic moduli and foam film thicknesses, indicate a correlation to the network elasticity of the MGs predicted by the affine network model.

3.
Article in English | MEDLINE | ID: mdl-35639454

ABSTRACT

This paper addresses the effect of polyelectrolyte stiffness on the surface structure of polyelectrolyte (P)/surfactant (S) mixtures. Therefore, two different anionic Ps with different intrinsic persistence length lP are studied while varying the salt concentration (0-10-2 M). Either monosulfonated polyphenylene sulfone (sPSO2-220, lP ∼20 nm) or sodium poly(styrenesulfonate) (PSS, lP ∼1 nm) is mixed with the cationic surfactant tetradecyltrimethylammonium bromide (C14TAB) well below its critical micelle concentration and studied with tensiometry and neutron reflectivity experiments. We kept the S concentration (10-4 M) constant, while we varied the P concentration (10-5-10-3 M of the monomer, denoted as monoM). P and S adsorb at the air/water interface for all studied mixtures. Around the bulk stoichiometric mixing point (BSMP), PSS/C14TAB mixtures lose their surface activity, whereas sPSO2-220/C14TAB mixtures form extended structures perpendicular to the surface (meaning a layer of S with attached P and additional layers of P and S underneath instead of only a monolayer of S with P). Considering the different P monomer structures as well as the impact of salt, we identified the driving force for the formation of these extended structures: compensation of all interfacial charges (P/S ratio ∼1) to maximize the gain of entropy. By increasing the flexibility of P, we can tune the interfacial structures from extended structures to monolayers. These findings may help improve applications based on the adsorption of P/S mixtures in the fields of cosmetic or oil recovery.

4.
Rev Sci Instrum ; 91(12): 125111, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33379978

ABSTRACT

The European Spallation Source (ESS), which is under construction in Lund (Sweden), will be the next leading neutron facility with an unprecedented brilliance and novel long-pulse time structure. A long-pulse source not only provides a high time-average flux but also opens the possibility to tune the resolution by using pulse shaping choppers. Thus, an instrument can readily be operated in either a high flux or a high resolution mode. Several of the shorter instruments at the ESS will employ Wavelength Frame Multiplication (WFM) in order to enable a sufficient resolution while offering a continuous and broad wavelength range. A test beamline was operated until the end of 2019 at the research reactor in Berlin to test components and methods, including WFM, in order to prepare the new facility for the operation of neutron instruments and successful first science. We herein demonstrate the implementation of WFM for reflectometry. By selecting a short pulse mode under the same geometrical configuration, we compare and discuss the results for two reference samples. The reported experiments not only serve to prove the reliability of the WFM approach but also, for the first time, demonstrate the full instrument control, data acquisition and data reduction chain that will be implemented at the ESS.

5.
Chem Commun (Camb) ; 56(6): 952-955, 2020 Jan 18.
Article in English | MEDLINE | ID: mdl-31858100

ABSTRACT

A novel structural framework is presented to rationalize the foam film stability of polyelectrolyte/surfactant mixtures using neutron reflectivity data. Provision of electrostatic or steric stabilization in thin foam films is related to the spatial distributions of molecules interacting from opposing air/water interfaces. The advance is discussed in the context of many studies on mixed systems over two decades that focused on macroscopic properties such as the surface tension, elasticity, potential and composition, but for which no robust correlations have been established. This concept can now be broadened to other colloidal dispersions of high impact for technical, environmental and life science applications.

6.
J Chem Phys ; 149(16): 163322, 2018 Oct 28.
Article in English | MEDLINE | ID: mdl-30384703

ABSTRACT

Composites made of polymer brushes with inclusions of gold nanoparticles (AuNPs) combine the responsive nature of polymer brushes with the optical properties of the AuNPs, which offers the possibility to be used as colorimetric sensors. To this end, it is crucial to know how AuNPs are distributed inside the brush. Here, this distribution was elucidated by neutron reflectometry with contrast variation and a self-consistent reflectivity analysis based on the analytical parameterization of the volume fraction profiles of all chemical components. In contrast to former studies, this analysis allows the determination of the spatial distribution of components separately from each other: polyelectrolyte, AuNP, and water. Cationic poly-[2-(Methacryloyloxy) ethyl] trimethylammonium chloride (PMETAC) brushes were loaded with 5 nm AuNPs, which were coated with a pH-sensitive capping. The pH was varied during the incubation of the brush in the AuNP suspension. At a lower pH, AuNPs form aggregates in suspension and are attached to the brush periphery. They adsorb into the brush but do not fully penetrate it due to their bulkiness. At a higher pH, AuNP suspensions are electrostatically stabilized and the AuNPs penetrate the brush entirely. However, the AuNP distribution over the brush is not homogeneous but decreases gradually toward the substrate. Penetration of the AuNPs leads to a more extended conformation of the brush. According to the results of the detailed analysis of all components, an increase in water content could be excluded as a reason for brush swelling but replacement of water by the AuNP was observed.

7.
Langmuir ; 34(38): 11518-11525, 2018 09 25.
Article in English | MEDLINE | ID: mdl-30179490

ABSTRACT

The paper addresses the swelling of polyelectrolyte multilayers (PEMs) at varying humidity. In particular, a new model will be presented, which takes the gradual filling of voids into account. Absorption of water results in PEM swelling. This absorbed water can be distinguished into swelling and void water. Swelling water leads to an increase in thickness and a change of the optical properties of PEMs, while the void water results only in a change of the optical properties. In former studies, neutron reflectometry was used to distinguish between swelling and void water. However, as we show in this study, it is possible to resolve the two different kinds of water in PEMs by ellipsometry, a much simpler tool. The present study evaluates and interprets the refractive index of polystyrenesulfonate/polydiallyldimethylammonium chloride (PSS/PDADMAC) PEMs. Both the swelling behavior and the refractive index change as a function of relative humidity and were found to be independent of the layer number. The void model and the extended void model were used to describe the data. The void model allows fitting the experimentally determined refractive index at humidity beyond 20% RH but fails for humidity lower than 20% RH. Therefore, we modified the existing model in order to account for air-water exchange. The extended void model assumes a gradual air-water exchange at low h and describes the refractive index over the entire humidity range in a precise way. Up to 30% RH, air and water coexist. Above this threshold, the voids are completely filled with water and this threshold does not change either with layer number or with the outermost layer. Furthermore, this model allows the determination of the volume fraction of the voids (0.05 ± 0.01) and the refractive index of the pure polymer matter (1.592 ± 0.002).

8.
Angew Chem Int Ed Engl ; 55(16): 5028-34, 2016 Apr 11.
Article in English | MEDLINE | ID: mdl-26991543

ABSTRACT

A novel method for the preparation of transparent Al2O3 coatings of polymers is presented. An environmental-friendly sol-gel method is employed, which implies mild conditions and low costs. A thermoresponsive brush is chosen as a model surface. X-ray photoelectron spectroscopy is used to characterize the samples during the conversion of the precursor Al(OH)3 into oxide and to prove the mildness of the protocol. The study evidences a relation between lateral homogeneity of alumina and the wettability of the polymer surface by the precursor solution, while morphology and elasticity are dominated by the polymer properties. The study of the swelling behavior of the underneath brush reveals the absence of water uptake, proving the impermeability of the alumina layer. The broad chemical and structural variety of polymers, combined with the robustness of transparent alumina films, makes these composites promising as biomedical implants, protective sheets and components for electric and optical devices.

9.
Soft Matter ; 12(4): 1176-83, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26612742

ABSTRACT

The complex interaction of polyelectrolyte multilayers (PEMs) physisorbed onto end-grafted polymer brushes with focus on the temperature-responsive behavior of the system is addressed in this work. The investigated brush/multilayer composite consists of a poly(styrene sulfonate)/poly(diallyldimethylammonium chloride) (PSS/PDADMAC) multilayer deposited onto the poly(N-isopropylacrylamide-b-dimethylaminoethyl methacrylate) P(NIPAM-b-DMAEMA) brush. Ellipsometry and neutron reflectometry were used to monitor the brush collapse with the thickness decrease as a function of temperature and the change in the monomer distribution perpendicular to the substrate at temperatures below, across and above the phase transition, respectively. It was found that the adsorption of PEMs onto polymer brushes had a hydrophobization effect on PDMAEMA, inducing the shift of its phase transition to lower temperatures, but without suppressing its temperature-responsiveness. Moreover, the diffusion of the free polyelectrolyte chains inside the charged brush was proved by comparing the neutron scattering length density profile of pure and the corresponding PEM-capped brushes, eased by the enhanced contrast between hydrogenated brushes and deuterated PSS chains. The results presented herein demonstrate the possibility of combining a temperature-responsive brush with polyelectrolyte multilayers without quenching the responsive behavior, even though significant interpolyelectrolyte interactions are present. This is of importance for the design of multicompartment coatings, where the brush can be used as a reservoir for the controlled release of substances and the multilayer on the top as a membrane to control the diffusion in/out by applying different stimuli.

SELECTION OF CITATIONS
SEARCH DETAIL
...