Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Am J Hum Genet ; 107(3): 527-538, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32758447

ABSTRACT

Generalized pustular psoriasis (GPP) is a severe multi-systemic inflammatory disease characterized by neutrophilic pustulosis and triggered by pro-inflammatory IL-36 cytokines in skin. While 19%-41% of affected individuals harbor bi-allelic mutations in IL36RN, the genetic cause is not known in most cases. To identify and characterize new pathways involved in the pathogenesis of GPP, we performed whole-exome sequencing in 31 individuals with GPP and demonstrated effects of mutations in MPO encoding the neutrophilic enzyme myeloperoxidase (MPO). We discovered eight MPO mutations resulting in MPO -deficiency in neutrophils and monocytes. MPO mutations, primarily those resulting in complete MPO deficiency, cumulatively associated with GPP (p = 1.85E-08; OR = 6.47). The number of mutant MPO alleles significantly differed between 82 affected individuals and >4,900 control subjects (p = 1.04E-09); this effect was stronger when including IL36RN mutations (1.48E-13) and correlated with a younger age of onset (p = 0.0018). The activity of four proteases, previously implicated as activating enzymes of IL-36 precursors, correlated with MPO deficiency. Phorbol-myristate-acetate-induced formation of neutrophil extracellular traps (NETs) was reduced in affected cells (p = 0.015), and phagocytosis assays in MPO-deficient mice and human cells revealed altered neutrophil function and impaired clearance of neutrophils by monocytes (efferocytosis) allowing prolonged neutrophil persistence in inflammatory skin. MPO mutations contribute significantly to GPP's pathogenesis. We implicate MPO as an inflammatory modulator in humans that regulates protease activity and NET formation and modifies efferocytosis. Our findings indicate possible implications for the application of MPO inhibitors in cardiovascular diseases. MPO and affected pathways represent attractive targets for inducing resolution of inflammation in neutrophil-mediated skin diseases.


Subject(s)
Inflammation/genetics , Interleukins/genetics , Peroxidase/genetics , Psoriasis/genetics , Skin Diseases/genetics , Adult , Animals , Cytokines/genetics , Extracellular Traps/genetics , Female , Humans , Inflammation/pathology , Interleukin-1/genetics , Interleukins/metabolism , Male , Mice , Mutation/genetics , Neutrophils/metabolism , Psoriasis/pathology , Rare Diseases/enzymology , Rare Diseases/genetics , Rare Diseases/pathology , Skin/enzymology , Skin/pathology , Skin Diseases/pathology
4.
Hum Mol Genet ; 26(21): 4301-4313, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28973304

ABSTRACT

Psoriasis is a common inflammatory skin disorder for which multiple genetic susceptibility loci have been identified, but few resolved to specific functional variants. In this study, we sought to identify common and rare psoriasis-associated gene-centric variation. Using exome arrays we genotyped four independent cohorts, totalling 11 861 psoriasis cases and 28 610 controls, aggregating the dataset through statistical meta-analysis. Single variant analysis detected a previously unreported risk locus at TNFSF15 (rs6478108; P = 1.50 × 10-8, OR = 1.10), and association of common protein-altering variants at 11 loci previously implicated in psoriasis susceptibility. We validate previous reports of protective low-frequency protein-altering variants within IFIH1 (encoding an innate antiviral receptor) and TYK2 (encoding a Janus kinase), in each case establishing a further series of protective rare variants (minor allele frequency < 0.01) via gene-wide aggregation testing (IFIH1: pburden = 2.53 × 10-7, OR = 0.707; TYK2: pburden = 6.17 × 10-4, OR = 0.744). Both genes play significant roles in type I interferon (IFN) production and signalling. Several of the protective rare and low-frequency variants in IFIH1 and TYK2 disrupt conserved protein domains, highlighting potential mechanisms through which their effect may be exerted.


Subject(s)
Psoriasis/genetics , Tumor Necrosis Factor Ligand Superfamily Member 15/genetics , Alleles , Case-Control Studies , Cohort Studies , Exome , Female , Gene Frequency/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Genome-Wide Association Study , Genotype , Humans , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/metabolism , Male , Polymorphism, Single Nucleotide/genetics , Psoriasis/physiopathology , Risk Factors , TYK2 Kinase/genetics , TYK2 Kinase/metabolism , Tumor Necrosis Factor Ligand Superfamily Member 15/metabolism , Exome Sequencing
6.
Int J Cancer ; 136(6): E559-68, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25142776

ABSTRACT

Germline mutation testing in patients with colorectal cancer (CRC) is offered only to a subset of patients with a clinical presentation or tumor histology suggestive of familial CRC syndromes, probably underestimating familial CRC predisposition. The aim of our study was to determine whether unbiased screening of newly diagnosed CRC cases with next generation sequencing (NGS) increases the overall detection rate of germline mutations. We analyzed 152 consecutive CRC patients for germline mutations in 18 CRC-associated genes using NGS. All patients were also evaluated for Bethesda criteria and all tumors were investigated for microsatellite instability, immunohistochemistry for mismatch repair proteins and the BRAF*V600E somatic mutation. NGS based sequencing identified 27 variants in 9 genes in 23 out of 152 patients studied (18%). Three of them were already reported as pathogenic and 12 were class 3 germline variants with an uncertain prediction of pathogenicity. Only 1 of these patients fulfilled Bethesda criteria and had a microsatellite instable tumor and an MLH1 germline mutation. The others would have been missed with current approaches: 2 with a MSH6 premature termination mutation and 12 uncertain, potentially pathogenic class 3 variants in APC, MLH1, MSH2, MSH6, MSH3 and MLH3. The higher NGS mutation detection rate compared with current testing strategies based on clinicopathological criteria is probably due to the large genetic heterogeneity and overlapping clinical presentation of the various CRC syndromes. It can also identify apparently nonpenetrant germline mutations complicating the clinical management of the patients and their families.


Subject(s)
Colorectal Neoplasms/genetics , Mutation , Adaptor Proteins, Signal Transducing/genetics , Adult , Aged , Aged, 80 and over , Colorectal Neoplasms/pathology , DNA Methylation , DNA Mismatch Repair , DNA, Neoplasm/analysis , Female , Humans , Male , Middle Aged , MutL Protein Homolog 1 , Nuclear Proteins/genetics , Prospective Studies , Proto-Oncogene Proteins B-raf/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...