Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 299(4): 104607, 2023 04.
Article in English | MEDLINE | ID: mdl-36924944

ABSTRACT

The glycolipid transfer protein (GLTP) has been linked to many cellular processes aside from its best-known in vitro function as a lipid transport protein. It has been proposed to act as a sensor and regulator of glycosphingolipid homeostasis in cells. Furthermore, through its previously determined interaction with the endoplasmic reticulum membrane protein VAP-A (vesicle-associated membrane protein-associated protein A), GLTP may also be involved in facilitating vesicular transport in cells. In this study, we characterized the phenotype of CRISPR/Cas9-mediated GLTP KO HeLa cells. We showed that motility, three-dimensional growth, and cellular metabolism were all altered by GLTP knockout. Expression of a GLTP mutant incapable of binding VAP disrupted cell spheroid formation, indicating that the GLTP-VAP interaction is linked to cellular adhesion, cohesion, and three-dimensional growth. Most notably, we found evidence that GLTP, through its interaction with VAP-A, affects vesicular trafficking, marking the first cellular process discovered to be directly impacted by a change in GLTP expression.


Subject(s)
Biological Transport , Carrier Proteins , Cell Membrane , Humans , Biological Transport/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Membrane/metabolism , HeLa Cells , Gene Knockout Techniques , Protein Binding/genetics , Gene Expression Regulation/genetics , Cytosol/metabolism , Cell Movement/genetics
2.
J Cell Biol ; 219(5)2020 05 04.
Article in English | MEDLINE | ID: mdl-32303746

ABSTRACT

The yeast phosphatidylserine (PtdSer) decarboxylase Psd2 is proposed to engage in a membrane contact site (MCS) for PtdSer decarboxylation to phosphatidylethanolamine (PtdEtn). This proposed MCS harbors Psd2, the Sec14-like phosphatidylinositol transfer protein (PITP) Sfh4, the Stt4 phosphatidylinositol (PtdIns) 4-OH kinase, the Scs2 tether, and an uncharacterized protein. We report that, of these components, only Sfh4 and Stt4 regulate Psd2 activity in vivo. They do so via distinct mechanisms. Sfh4 operates via a mechanism for which its PtdIns-transfer activity is dispensable but requires an Sfh4-Psd2 physical interaction. The other requires Stt4-mediated production of PtdIns-4-phosphate (PtdIns4P), where Stt4 (along with the Sac1 PtdIns4P phosphatase and endoplasmic reticulum-plasma membrane tethers) indirectly modulate Psd2 activity via a PtdIns4P homeostatic mechanism that influences PtdSer accessibility to Psd2. These results identify an example in which the biological function of a Sec14-like PITP is cleanly uncoupled from its canonical in vitro PtdIns-transfer activity and challenge popular functional assumptions regarding lipid-transfer protein involvements in MCS function.


Subject(s)
Membrane Proteins/genetics , Phosphatidylserines/genetics , Phospholipid Transfer Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , 1-Phosphatidylinositol 4-Kinase/genetics , Biological Transport/genetics , Lipid Metabolism/genetics , Phosphatidylethanolamines/genetics , Phosphatidylethanolamines/metabolism , Phosphatidylserines/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
4.
J Biol Chem ; 294(50): 19081-19098, 2019 12 13.
Article in English | MEDLINE | ID: mdl-31690622

ABSTRACT

Phosphatidylinositol-transfer proteins (PITPs) are key regulators of lipid signaling in eukaryotic cells. These proteins both potentiate the activities of phosphatidylinositol (PtdIns) 4-OH kinases and help channel production of specific pools of phosphatidylinositol 4-phosphate (PtdIns(4)P) dedicated to specific biological outcomes. In this manner, PITPs represent a major contributor to the mechanisms by which the biological outcomes of phosphoinositide are diversified. The two-ligand priming model proposes that the engine by which Sec14-like PITPs potentiate PtdIns kinase activities is a heterotypic lipid-exchange cycle where PtdIns is a common exchange substrate among the Sec14-like PITP family, but the second exchange ligand varies with the PITP. A major prediction of this model is that second-exchangeable ligand identity will vary from PITP to PITP. To address the heterogeneity in the second exchange ligand for Sec14-like PITPs, we used structural, computational, and biochemical approaches to probe the diversities of the lipid-binding cavity microenvironments of the yeast Sec14-like PITPs. The collective data report that yeast Sec14-like PITP lipid-binding pockets indeed define diverse chemical microenvironments that translate into differential ligand-binding specificities across this protein family.


Subject(s)
Carrier Proteins/metabolism , Lipids/chemistry , Phospholipid Transfer Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/chemistry , Binding Sites , Carrier Proteins/chemistry , Models, Molecular , Phospholipid Transfer Proteins/chemistry , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry
5.
Elife ; 72018 02 27.
Article in English | MEDLINE | ID: mdl-29482721

ABSTRACT

A central feature of most stem cells is the ability to self-renew and undergo differentiation via asymmetric division. However, during asymmetric division the role of phosphatidylinositol (PI) lipids and their regulators is not well established. Here, we show that the sole type I PI transfer protein, Vibrator, controls asymmetric division of Drosophilaneural stem cells (NSCs) by physically anchoring myosin II regulatory light chain, Sqh, to the NSC cortex. Depletion of vib or disruption of its lipid binding and transfer activities disrupts NSC polarity. We propose that Vib stimulates PI4KIIIα to promote synthesis of a plasma membrane pool of phosphatidylinositol 4-phosphate [PI(4)P] that, in turn, binds and anchors myosin to the NSC cortex. Remarkably, Sqh also binds to PI(4)P in vitro and both Vib and Sqh mediate plasma membrane localization of PI(4)P in NSCs. Thus, reciprocal regulation between Myosin and PI(4)P likely governs asymmetric division of NSCs.


Subject(s)
Brain/growth & development , Cell Polarity , Drosophila Proteins/metabolism , Minor Histocompatibility Antigens/metabolism , Myosin Type II/metabolism , Neural Stem Cells/physiology , Phospholipid Transfer Proteins/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Animals , Drosophila/growth & development , Larva/growth & development , Protein Binding
6.
J Biol Chem ; 292(35): 14438-14455, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28718450

ABSTRACT

Phosphatidylinositol-transfer proteins (PITPs) regulate phosphoinositide signaling in eukaryotic cells. The defining feature of PITPs is their ability to exchange phosphatidylinositol (PtdIns) molecules between membranes, and this property is central to PITP-mediated regulation of lipid signaling. However, the details of the PITP-mediated lipid exchange cycle remain entirely obscure. Here, all-atom molecular dynamics simulations of the mammalian StART-like PtdIns/phosphatidylcholine (PtdCho) transfer protein PITPα, both on membrane bilayers and in solvated systems, informed downstream biochemical analyses that tested key aspects of the hypotheses generated by the molecular dynamics simulations. These studies provided five key insights into the PITPα lipid exchange cycle: (i) interaction of PITPα with the membrane is spontaneous and mediated by four specific protein substructures; (ii) the ability of PITPα to initiate closure around the PtdCho ligand is accompanied by loss of flexibility of two helix/loop regions, as well as of the C-terminal helix; (iii) the energy barrier of phospholipid extraction from the membrane is lowered by a network of hydrogen bonds between the lipid molecule and PITPα; (iv) the trajectory of PtdIns or PtdCho into and through the lipid-binding pocket is chaperoned by sets of PITPα residues conserved throughout the StART-like PITP family; and (v) conformational transitions in the C-terminal helix have specific functional involvements in PtdIns transfer activity. Taken together, these findings provide the first mechanistic description of key aspects of the PITPα PtdIns/PtdCho exchange cycle and offer a rationale for the high conservation of particular sets of residues across evolutionarily distant members of the metazoan StART-like PITP family.


Subject(s)
Lipid Bilayers/metabolism , Models, Molecular , Phosphatidylcholines/metabolism , Phosphatidylinositols/metabolism , Phospholipid Transfer Proteins/metabolism , Amino Acid Sequence , Amino Acid Substitution , Animals , Apoproteins/chemistry , Apoproteins/genetics , Apoproteins/metabolism , Biological Transport , Computational Biology , Conserved Sequence , Energy Transfer , Hydrogen Bonding , Ligands , Lipid Bilayers/chemistry , Molecular Dynamics Simulation , Mutation, Missense , Phosphatidylcholines/chemistry , Phosphatidylinositols/chemistry , Phospholipid Transfer Proteins/chemistry , Phospholipid Transfer Proteins/genetics , Polymorphism, Single Nucleotide , Protein Conformation , Protein Interaction Domains and Motifs , Rats , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
7.
Mol Biol Cell ; 27(14): 2317-30, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27193303

ABSTRACT

Lipid signaling, particularly phosphoinositide signaling, plays a key role in regulating the extreme polarized membrane growth that drives root hair development in plants. The Arabidopsis AtSFH1 gene encodes a two-domain protein with an amino-terminal Sec14-like phosphatidylinositol transfer protein (PITP) domain linked to a carboxy-terminal nodulin domain. AtSfh1 is critical for promoting the spatially highly organized phosphatidylinositol-4,5-bisphosphate signaling program required for establishment and maintenance of polarized root hair growth. Here we demonstrate that, like the yeast Sec14, the AtSfh1 PITP domain requires both its phosphatidylinositol (PtdIns)- and phosphatidylcholine (PtdCho)-binding properties to stimulate PtdIns-4-phosphate [PtdIns(4)P] synthesis. Moreover, we show that both phospholipid-binding activities are essential for AtSfh1 activity in supporting polarized root hair growth. Finally, we report genetic and biochemical evidence that the two-ligand mechanism for potentiation of PtdIns 4-OH kinase activity is a broadly conserved feature of plant Sec14-nodulin proteins, and that this strategy appeared only late in plant evolution. Taken together, the data indicate that the PtdIns/PtdCho-exchange mechanism for stimulated PtdIns(4)P synthesis either arose independently during evolution in yeast and in higher plants, or a suitable genetic module was introduced to higher plants from a fungal source and subsequently exploited by them.


Subject(s)
Arabidopsis Proteins/metabolism , Phosphatidylinositols/biosynthesis , Phospholipid Transfer Proteins/metabolism , Amino Acid Sequence , Arabidopsis/metabolism , Ligands , Membrane Proteins/metabolism , Phosphatidylcholines/metabolism , Phosphatidylinositol Phosphates/metabolism , Phosphatidylinositols/metabolism , Plant Proteins/metabolism , Plant Roots/metabolism , Protein Binding , Protein Domains , Signal Transduction
8.
Langmuir ; 31(51): 13783-92, 2015 Dec 29.
Article in English | MEDLINE | ID: mdl-26639840

ABSTRACT

In this study, we measured the time-resolved fluorescence of trans-parinaric acid (tPA), steady-state fluorescence anisotropy of diphenylhexatriene (DPH), and (2)H NMR of 10,10-d2-stearoyl lipids in stearoyl sphingomyelin with cholesterol (SSM/Chol) and l-palmitoyl-2-stearoyl-sn-glycero-3-phosphocholine with Chol (PSPC/Chol) binary membranes. The results suggest that the membrane order obtained from the fluorescence experiments shows a similar temperature dependency as those of the (2)H NMR data. More importantly, the time-resolved fluorescence data implied the presence of at least two types of domains, cholesterol-poor gel-like domains (CPGLD) and cholesterol-enriched liquid-ordered (Lo) domains. These domains appear on a nano-to-micro second time scale for both SSM-Chol and PSPC-Chol membranes. The relative size of the gel-like domain was also estimated from the temperature-dependent lifetime measurements and (2)H NMR spectral changes. The results imply that the size of the gel-like domains is very small, probably on the nanometer scale, and smaller in SSM-Chol membrane than those in PSPC-Chol bilayers, which could account for the higher thermal stability of SM-Chol membranes. The present study demonstrates that gel-like nanodomains occur in SM-Chol binary membrane even with Chol content of over 33 mol %, which has been thought to consist exclusively of Lo phase, implying that not only Lo domains but also gel-like nanodomains are important for formation of lipid-ordered phase in SM-Chol and PC-Chol membranes.


Subject(s)
Cell Membrane/metabolism , Cholesterol/chemistry , Magnetic Resonance Spectroscopy , Phosphatidylcholines/chemistry , Sphingomyelins/chemistry , Cell Membrane/chemistry , Fluorescence , Gels/chemistry , Models, Biological , Temperature
9.
PLoS One ; 10(11): e0143385, 2015.
Article in English | MEDLINE | ID: mdl-26599810

ABSTRACT

Ceramides can be delivered to cultured cells without solvents in the form of complexes with cholesteryl phosphocholine. We have analysed the delivery of three different radiolabeled D-erythro-ceramides (C6-Cer, C10-Cer and C16-Cer) to HeLa cells, and followed their metabolism as well as the cell viability. We found that all three ceramides were successfully taken up by HeLa cells when complexed to CholPC in an equimolar ratio, and show that the ceramides show different rates of cellular uptake and metabolic fate. The C6-Cer had the highest incorporation rate, followed by C10-Cer and C16-Cer, respectively. The subsequent effect on cell viability strongly correlated with the rate of incorporation, where C6-Cer had the strongest apoptotic effects. Low-dose (1 µM) treatment with C6-Cer favoured conversion of the precursor to sphingomyelin, whereas higher concentrations (25-100 µM) yielded increased conversion to C6-glucosylceramide. Similar results were obtained for C10-Cer. In the lower-dose C16-Cer experiments, most of the precursor was degraded, whereas at high-dose concentrations the precursor remained un-metabolized. Using this method, we demonstrate that ceramides with different chain lengths clearly exhibit varying rates of cellular uptake. The cellular fate of the externally delivered ceramides are clearly connected to their rate of incorporation and their subsequent effects on cell viability may be in part determined by their chain length.


Subject(s)
Ceramides/metabolism , Cell Survival/drug effects , Ceramides/chemistry , Ceramides/pharmacology , Cholesterol Esters/chemistry , HeLa Cells , Humans , Phosphorylcholine/chemistry
10.
Biochim Biophys Acta ; 1838(12): 3069-77, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25151597

ABSTRACT

We examined the volumetric behavior of the dipalmitoylphosphatidylcholine (DPPC)/cholesterol binary bilayer system with high accuracy and more cholesterol concentrations to reveal the detailed molecular states in the liquid-disordered (Ld) phase, the liquid-ordered (Lo) phase and the gel phase. We measured the average specific volume of the binary bilayer at several temperatures by the neutral flotation method and calculated the average volume per molecule to estimate the partial molecular volumes of DPPC and cholesterol in each phase. As a result, we found that the region with intermediate cholesterol concentrations showed a more complicated behavior than expected from simple coexistence of Ld and Lo domains. We also measured fluorescence decay of trans-parinaric acid (tPA) added into the binary bilayer with more cholesterol concentrations to get further insight into the cholesterol-induced formation of the Lo phase. On the basis of these results we discuss the molecular interaction between DPPC and cholesterol molecule in the Lo phase and the manner of Ld/Lo phase coexistence.

11.
PLoS One ; 8(4): e61290, 2013.
Article in English | MEDLINE | ID: mdl-23620740

ABSTRACT

Ceramides are potent bioactive molecules in cells. However, they are very hydrophobic molecules, and difficult to deliver efficiently to cells. We have made fluid bilayers from a short-chain D-erythro-ceramide (C6-Cer) and cholesteryl phosphocholine (CholPC), and have used this as a formulation to deliver ceramide to cells. C6-Cer complexed with CholPC led to much larger biological effects in cultured cells (rat thyroid FRTL-5 and human HeLa cells in culture) compared to C6-Cer dissolved in dimethyl sulfoxide (DMSO). Inhibition of cell proliferation and induction of apoptosis was significantly more efficient by C6-Cer/CholPC compared to C6-Cer dissolved in DMSO. C6-Cer/CholPC also permeated cell membranes and caused mitochondrial Ca(2+) influx more efficiently than C6-Cer in DMSO. Even though CholPC was taken up by cells to some extent (from C6-Cer/CholPC bilayers), and was partially hydrolyzed to free cholesterol (about 9%), none of the antiproliferative effects were due to CholPC or excess cholesterol. The ceramide effect was not limited to D-erythro-C6-Cer, since L-erythro-C6-Cer and D-erythro-C6-dihydroCer also inhibited cell priolifereation and affected Ca(2+) homeostasis. We conclude that C6-Cer complexed to CholPC increased the bioavailability of the short-chain ceramide for cells, and potentiated its effects in comparison to solvent-dissolved C6-Cer. This new ceramide formulation appears to be superior to previous solvent delivery approaches, and may even be useful with longer-chain ceramides.


Subject(s)
Ceramides/metabolism , Phosphorylcholine/metabolism , Animals , Apoptosis/drug effects , Calcium/metabolism , Cell Proliferation/drug effects , Cells, Cultured , Ceramides/pharmacology , Cytosol/drug effects , Cytosol/metabolism , Dimethyl Sulfoxide/pharmacology , Homeostasis/drug effects , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Phosphorylcholine/chemistry , Rats , Solvents/chemistry , Tritium/metabolism
12.
Langmuir ; 29(7): 2319-29, 2013 Feb 19.
Article in English | MEDLINE | ID: mdl-23356741

ABSTRACT

We prepared cholesteryl phosphocholine (CholPC) by chemical synthesis and studied its interactions with small (ceramide and cholesterol) and large headgroup (sphingomyelin (SM) and phosphatidylcholine) colipids in bilayer membranes. We established that CholPC could form bilayers (giant uni- and multilamellar vesicles, as well as extruded large unilamellar vesicles) with both ceramides and cholesterol (initial molar ratio 1:1). The extruded bilayers appeared to be fluid, although highly ordered, even when the ceramide had an N-linked palmitoyl acyl chain. In binary systems containing CholPC and either palmitoyl SM or 1,2-dipalmitoyl-sn-glycero-3-phospholine, CholPC markedly destabilized the gel phase of the respective large headgroup lipid. In 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers, CholPC was much less efficient than cholesterol in ordering the acyl chains. In complex bilayers containing POPC and cholesterol or palmitoyl ceramide, CholPC appeared to prefer interacting with the small headgroup lipids over POPC. When the degree of order in CholPC/PCer bilayers was compared to Chol/PSM bilayers, CholPC/PCer bilayers were more disordered (based on DPH anisotropy). This finding may result from different headgroup orientation and dynamics in CholPC and PSM. Our results overall can be understood if one takes into account the molecular shape of CholPC (large polar headgroup and modest size hydrophobic part) when interpreting molecular interactions between small and large headgroup colipids. The results are also consistent with the proposed umbrella model" for explaining cholesterol/colipid interactions.


Subject(s)
Ceramides/chemistry , Membrane Lipids/chemistry , Phosphatidylcholines/chemistry , Molecular Structure
13.
Biochim Biophys Acta ; 1828(3): 932-7, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23220446

ABSTRACT

Lipid self-organization is believed to be essential for shaping the lateral structure of membranes, but it is becoming increasingly clear that also membrane proteins can be involved in the maintenance of membrane architecture. Cholesterol is thought to be important for the lateral organization of eukaryotic cell membranes and has also been implicated to take part in the sorting of cellular transmembrane proteins. Hence, a good starting point for studying the influence of lipid-protein interactions on membrane trafficking is to find out how transmembrane proteins influence the lateral sorting of cholesterol in phospholipid bilayers. By measuring equilibrium partitioning of the fluorescent cholesterol analog cholestatrienol between large unilamellar vesicles and methyl-ß-cyclodextrin the effect of hydrophobic matching on the affinity of sterols for phospholipid bilayers was determined. Sterol partitioning was measured in 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers with and without WALP19, WALP23 or WALP27 peptides. The results showed that the affinity of the sterol for the bilayers was affected by hydrophobic matching. An increasing positive hydrophobic mismatch led to stronger sterol binding to the bilayers (except in extreme situations), and a large negative hydrophobic mismatch decreased the affinity of the sterol for the bilayer. In addition, peptide insertion into the phospholipid bilayers was observed to depend on hydrophobic matching. In conclusion, the results showed that hydrophobic matching can affect lipid-protein interactions in a way that may facilitate the formation of lateral domains in cell membranes. This could be of importance in membrane trafficking.


Subject(s)
Lipid Bilayers/chemistry , Peptides/chemistry , Phospholipids/chemistry , Sterols/chemistry , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Biophysics/methods , Cholestenes/chemistry , Dimyristoylphosphatidylcholine/chemistry , Dose-Response Relationship, Drug , Hydrophobic and Hydrophilic Interactions , Kinetics , Lipids/chemistry , Models, Chemical , Models, Statistical , Phosphatidylcholines/chemistry , beta-Cyclodextrins/chemistry
14.
Langmuir ; 28(1): 648-55, 2012 Jan 10.
Article in English | MEDLINE | ID: mdl-22128897

ABSTRACT

3ß-Amino-5-cholestene (aminocholesterol) is a synthetic sterol whose properties in bilayer membranes have been examined. In fluid palmitoyl sphingomyelin (PSM) bilayers, aminocholesterol and cholesterol were equally effective in increasing acyl chain order, based on changes in diphenylhexatriene (DPH) anisotropy. In fluid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers, aminocholesterol ordered acyl chains, but slightly less efficiently than cholesterol. Aminocholesterol eliminated the PSM and DPPC gel-to-liquid crystalline phase transition enthalpy linearly with concentration, and the enthalpy approached zero at 30 mol % sterol. Whereas cholesterol was able to increase the thermostability of ordered PSM domains in a fluid bilayer, aminocholesterol under equal conditions failed to do this, suggesting that its interaction with PSM was not as favorable as cholesterols. In ternary mixed bilayers, containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), PSM or DPPC, and cholesterol at proportions to contain a liquid-ordered phase (60:40 by mol of POPC and PSM or DPPC, and 30 mol % cholesterol), the average lifetime of trans-parinaric acid (tPA) was close to 20 ns. When cholesterol was replaced with aminocholesterol in such mixed bilayers, the average lifetime of tPA was only marginally shorter (about 18 ns). This observation, together with acyl chain ordering data, clearly shows that aminocholesterol was able to form a liquid-ordered phase with saturated PSM or DPPC. We conclude that aminocholesterol should be a good sterol replacement in model membrane systems for which a partial positive charge is deemed beneficial.


Subject(s)
Cholestenes/chemistry , Lipid Bilayers , Phospholipids/chemistry , Calorimetry, Differential Scanning
15.
Biophys J ; 100(11): 2633-41, 2011 Jun 08.
Article in English | MEDLINE | ID: mdl-21641308

ABSTRACT

The interaction between cholesterol and phospholipids in bilayer membranes is important for the formation and maintenance of membrane structure and function. However, cholesterol does not interact favorably with all types of phospholipids and, for example, prefers more ordered sphingomyelins (SMs) over phosphatidylcholines (PCs). The reason for this preference is not clear. Here we have studied whether acyl-chain order could be responsible for the preferred sterol interaction with SMs. Acyl-chain order was deduced from diphenylhexatriene anisotropy and from the deuterium order parameter obtained by (2)H-NMR on bilayers made from either 14:0/14:0((d27))-PC, or 14:0((d27))-SM. Sterol/phospholipid interaction was determined from sterol bilayer partitioning. Cholestatrienol (CTL) was used as a fluorescence probe for cholesterol, because its relative membrane partitioning is similar to cholesterol. When CTL was allowed to reach equilibrium partitioning between cyclodextrins and unilamellar vesicles made from either 14:0/14:0-PC or 14:0-SM, the molar-fraction partitioning coefficient (K(x)) was approximately twofold higher for SM bilayers than for PC bilayers. This was even the case when the temperature in the SM samples was raised to achieve equal acyl-chain order, as determined from 1,6-diphenyl-1,3,5-hexatriene (DPH) anisotropy and the deuterium order parameter. Although the K(x) did increase with acyl-chain order, the higher K(x) for SM bilayers was always evident. At equal acyl-chain order parameter (DPH anisotropy), the K(x) was also higher for 14:0-SM bilayers than for bilayers made from either 14:0/15:0-PC or 15:0-/14:0-PC, suggesting that minor differences in chain length or molecular asymmetry are not responsible for the difference in K(x). We conclude that acyl-chain order affects the bilayer affinity of CTL (and thus cholesterol), but that it is not the cause for the preferred affinity of sterols for SMs over matched PCs. Instead, it is likely that the interfacial properties of SMs influence and stabilize interactions with sterols in bilayer membranes.


Subject(s)
Cholestenes/metabolism , Lipid Bilayers/metabolism , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism , Sphingomyelins/chemistry , Sphingomyelins/metabolism , Anisotropy , Cell Membrane/chemistry , Cell Membrane/metabolism , Diphenylhexatriene/metabolism , Lipid Bilayers/chemistry , Membrane Fluidity , Myristates/metabolism , Substrate Specificity , Temperature
16.
Biochim Biophys Acta ; 1808(3): 727-32, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21167130

ABSTRACT

The bilayer properties and interactions with cholesterol of N-acyl hydroxylated sphingomyelins (SM) were examined, and results were compared to nonhydroxylated chain-matched SM. The natural OH(D)-enantiomer of hydroxylated SM (with 16:0 or 22:0 acyl chain lengths) analogs was synthesized. Measuring steady-state diphenylhexatriene anisotropy, we observed that pure 2OH-SM bilayers always showed higher (5-10 °C) gel-liquid transition temperatures (T(m)) compared to their nonhydroxylated chain-matched analogs. Bilayers made from 3OH(D)-palmitoyl SM, however, had lower T(m) (5 °C) than palmitoyl SM. These data show that hydroxylation in a position-dependent manner directly affected SM interactions and gel state stability. From the c-laurdan emission spectra, we could observe that 2OH-palmitoyl SM bilayers showed a redshift in the emission compared to nonhydroxylated palmitoyl SM bilayers, whereas the opposite was true for c-laurdan emission in 3OH-palmitoyl SM bilayers. All hydroxylated SM analogs were able to form sterol-enriched ordered domains in a fluid phospholipid bilayer. 2-Hydroxylation appeared to increase domain thermostability compared to nonhydroxylated SM, whereas 3-hydroxylation appeared to decrease domain stability. When sterol affinity to bilayers containing SM analogs was determined (cholestatrienol partitioning), the affinity for hydroxylated SM analog bilayers was clearly reduced compared to the nonhydroxylated SM bilayers. Our results with hydroxylated SM analogs clearly show that hydroxylation affects interlipid interactions in a position-dependent manner.


Subject(s)
Amides/chemistry , Cell Membrane/chemistry , Fatty Acids/chemistry , Lipid Bilayers/chemistry , Phospholipids/chemistry , Sphingomyelins/chemistry , 2-Naphthylamine/analogs & derivatives , Calorimetry, Differential Scanning , Cholesterol/chemistry , Fluorescent Dyes , Hydroxylation , Laurates , Sterols/chemistry , Temperature
17.
Biophys J ; 99(10): 3300-8, 2010 Nov 17.
Article in English | MEDLINE | ID: mdl-21081078

ABSTRACT

Sphingomyelins (SMs) and sterols are important constituents of the plasma membrane and have also been identified as major lipid components in membrane rafts. Using SM analogs with decreasing headgroup methylation, we systemically analyzed the effect of headgroup size on membrane properties and interactions with cholesterol. An increase in headgroup size resulted in a decrease in the main phase transition. Atom-scale molecular-dynamics simulations were in agreement with the fluorescence anisotropy experiments, showing that molecular areas increased and acyl chain order decreased with increasing headgroup size. Furthermore, the transition temperatures were constantly higher for SM headgroup analogs compared to corresponding phosphatidylcholine headgroup analogs. The sterol affinity for phospholipid bilayers was assessed using a sterol-partitioning assay and an increased headgroup size increased sterol affinity for the bilayer, with a higher sterol affinity for SM analogs as compared to phosphatidylcholine analogs. Moreover, the size of the headgroup affected the formation and composition of cholesterol-containing ordered domains. Palmitoyl-SM (the largest headgroup) seemed to attract more cholesterol into ordered domains than the other SM analogs with smaller headgroups. The ordering and condensing effect of cholesterol on membrane lipids was also largest for palmitoyl-SM as compared to the smaller SM analogs. The results show that the size of the SM headgroup is crucially important for SM-SM and SM-sterol interactions. Our results further emphasize that interfacial electrostatic interactions are important for stabilizing cholesterol interactions with SMs.


Subject(s)
Cholesterol/metabolism , Sphingomyelins/chemistry , Sphingomyelins/metabolism , Anisotropy , Cholestenes/chemistry , Diphenylhexatriene/chemistry , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Membrane Microdomains/metabolism , Models, Biological , Phase Transition , Transition Temperature , Unilamellar Liposomes/chemistry , Water
18.
Biophys J ; 99(2): 526-33, 2010 Jul 21.
Article in English | MEDLINE | ID: mdl-20643071

ABSTRACT

Cholesterol is distributed unevenly between different cellular membrane compartments, and the cholesterol content increases from the inner bilayers toward the plasma membrane. It has been suggested that this cholesterol gradient is important in the sorting of transmembrane proteins. Cholesterol has also been to shown play an important role in lateral organization of eukaryotic cell membranes. In this study the aim was to determine how transmembrane proteins influence the lateral distribution of cholesterol in phospholipid bilayers. Insight into this can be obtained by studying how cholesterol interacts with bilayer membranes of different composition in the presence of designed peptides that mimic the transmembrane helices of proteins. For this purpose we developed an assay in which the partitioning of the fluorescent cholesterol analog CTL between LUVs and mbetaCD can be measured. Comparison of how cholesterol and CTL partitioning between mbetaCD and phospholipid bilayers with different composition suggests that CTL sensed changes in bilayer composition similarly as cholesterol. Therefore, the results obtained with CTL can be used to understand cholesterol distribution in lipid bilayers. The effect of WALP23 on CTL partitioning between DMPC bilayers and mbetaCD was measured. From the results it was clear that WALP23 increased both the order in the bilayers (as seen from CTL and DPH anisotropy) and the affinity of the sterol for the bilayer in a concentration dependent way. Although WALP23 also increased the order in DLPC and POPC bilayers the effects on CTL partitioning was much smaller with these lipids. This indicates that proteins have the largest effect on sterol interactions with phospholipids that have longer and saturated acyl chains. KALP23 did not significantly affect the acyl chain order in the phospholipid bilayers, and inclusion of KALP23 into DMPC bilayers slightly decreased CTL partitioning into the bilayer. This shows that transmembrane proteins can both decrease and increase the affinity of sterols for the lipid bilayers surrounding proteins. This is likely to affect the sterol distribution within the bilayer and thereby the lateral organization in biomembranes.


Subject(s)
Cholestenes/metabolism , Lipid Bilayers/metabolism , Peptides/pharmacology , Phospholipids/chemistry , Anisotropy , Dimyristoylphosphatidylcholine/chemistry , Diphenylhexatriene/chemistry , Phosphatidylcholines/chemistry , beta-Cyclodextrins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...