Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 11(25): 15245-15257, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-35424041

ABSTRACT

Nanoscale SnO2 has many important properties ranging from sorption of metal ions to gas sensing. Using a novel electroblowing method followed by calcination, we synthesized SnO2 and composite SnO2/SiO2 submicron fibers with a Sn : Si molar ratio of 3 : 1. Different calcination temperatures and heating rates produced fibers with varying structures and morphologies. In all the fibers SnO2 was detected by XRD indicating the SnO2/SiO2 fibers to be composite instead of complete mixtures. We studied the Co2+ separation ability of the fibers, since 60Co is a problematic contaminant in nuclear power plant wastewaters. Both SnO2 and SnO2/SiO2 fibers had an excellent Co2+ uptake with their highest uptake/K d values being 99.82%/281 000 mL g-1 and 99.79%/234 000 mL g-1, respectively. Compared to the bare SnO2 fibers, the SiO2 component improved the elasticity and mechanical strength of the composite fibers which is advantageous in dynamic column operation.

2.
RSC Adv ; 9(39): 22355-22365, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-35519469

ABSTRACT

Mesoporous and large surface area zirconium oxide aggregate granules with good adsorption properties were synthesized using a simple precipitation method. Since utilization of these small and fragile particles is considered rather difficult in larger scale column operation, the product was formed into a fibrous form to improve its usability. The submicron fibers were obtained from an optimized electroblowing synthesis that resulted in elastic and uniform fibers with a tetragonal structure and high length-to-diameter ratio. In antimonate (Sb(v)) adsorption experiments, the higher calcination temperature (350 °C) of the fibers did not seem to decrease the Sb(v) adsorption capacity excessively since the high theoretical adsorption capacities were 113 mg g-1 and 58 mg g-1 for the aggregate and fibers, respectively. Both materials had fast kinetics, fibers being faster in the beginning of the reaction. Moreover, both materials offered efficient Sb(v) removal in the studied pH range from 1 to 11 by reaching over 99.9% adsorption in the optimal pH range. X-ray absorption near edge spectroscopy (XANES) revealed that Sb(v) stays as pentavalent antimony after being adsorbed by these materials and based on the isoelectric point shifts in the zeta potential measurement, adsorption occurs mainly by an inner-sphere complexation reaction. Finally, our study showed that pressure buildup in a flow-through column packed with zirconium oxide fibers was significantly lower than in a column packed with aggregates. Thus, zirconium oxide aggregates can be formed into submicron fibers with enhanced column operation properties without a too large compromise in the adsorption properties.

3.
Nanoscale Adv ; 1(11): 4373-4383, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-36134400

ABSTRACT

Both stable and radioactive antimony are common industrial pollutants. For antimonate (Sb(v)) removal from industrial waste water, we synthesized submicron zirconium dioxide (ZrO2) fibers by electroblowing and calcination of the as-electroblown fibers. The fibers are amorphous after calcination at 300 and 400 °C and their average diameter is 720 nm. The fibers calcined at 500 to 800 °C have an average diameter of 570 nm and their crystal structure transforms from tetragonal to monoclinic at the highest calcination temperatures. We investigated Sb(v) adsorption capacity of the synthesized ZrO2 fibers as a function of pH, adsorption isotherm at pH 6 and adsorption kinetics at pH 7. The tetragonal ZrO2 fibers calcined at 500 °C exhibited the best potential for Sb(v) remediation with Sb(v) uptake of 10 mg g-1 at pH 2 and a maximum Sb(v) uptake of 8.6 mg g-1 in the adsorption isotherm experiment. They also reached 30% of 7 days' Sb(v) uptake in only a minute. The adsorption kinetics followed the Elovich model.

SELECTION OF CITATIONS
SEARCH DETAIL
...