Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Phys Med ; 29(3): 233-48, 2013 May.
Article in English | MEDLINE | ID: mdl-22613369

ABSTRACT

Boron Neutron Capture Therapy (BNCT) is a binary radiotherapy method developed to treat patients with certain malignant tumours. To date, over 300 treatments have been carried out at the Finnish BNCT facility in various on-going and past clinical trials. In this technical review, we discuss our research work in the field of medical physics to form the groundwork for the Finnish BNCT patient treatments, as well as the possibilities to further develop and optimize the method in the future. Accordingly, the following aspects are described: neutron sources, beam dosimetry, treatment planning, boron imaging and determination, and finally the possibilities to detect the efficacy and effects of BNCT on patients.


Subject(s)
Boron Neutron Capture Therapy/methods , Boron Neutron Capture Therapy/trends , Forecasting , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Planning, Computer-Assisted/trends , Boron Neutron Capture Therapy/instrumentation , Finland , Technology Assessment, Biomedical
2.
Radiat Prot Dosimetry ; 151(1): 58-66, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22171095

ABSTRACT

Radiation exposure monitoring is a traditional keystone of occupational radiation safety measures in medical imaging. The aim of this study was to review the data on occupational exposures in a large central university hospital radiology organisation and propose changes in the radiation worker categories and methods of exposure monitoring. An additional objective was to evaluate the development of electronic personal dosimeters and their potential in the digitised radiology environment. The personal equivalent dose of 267 radiation workers (116 radiologists and 151 radiographers) was monitored using personal dosimeters during the years 2006-2010. Accumulated exposure monitoring results exceeding the registration threshold were observed in the personal dosimeters of 73 workers (59 radiologists' doses ranged from 0.1 to 45.1 mSv; 14 radiographers' doses ranged from 0.1 to 1.3 mSv). The accumulated personal equivalent doses are generally very small, only a few angiography radiologists have doses >10 mSv per 5 y. The typical effective doses are <10 µSv y(-1) and the highest value was 0.3 mSv (single interventional radiologist). A revised categorisation of radiation workers based on the working profile of the radiologist and observed accumulated doses is justified. Occupational monitoring can be implemented mostly with group dosimeters. An active real-time dosimetry system is warranted to support radiation protection strategy where optimisation aspects, including improving working methods, are essential.


Subject(s)
Occupational Exposure/analysis , Radiation Monitoring/methods , Radiology, Interventional , Humans , Radiation Dosage , Radiation Protection
3.
Acta Oncol ; 50(6): 966-72, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21767198

ABSTRACT

BACKGROUND: Magnetic resonance imaging (MRI) instrumentation is vulnerable to technical and image quality problems, and quality assurance is essential. In the studied regional imaging center the long-term quality assurance has been based on MagNET phantom measurements. American College of Radiology (ACR) has an accreditation program including a standardized image quality measurement protocol and phantom. The ACR protocol includes recommended acceptance criteria for clinical sequences and thus provides possibility to assess the clinical relevance of quality assurance. The purpose of this study was to test the ACR MRI phantom in quality assurance of a multi-unit imaging center. MATERIAL AND METHODS: The imaging center operates 11 MRI systems of three major manufacturers with field strengths of 3.0 T, 1.5 T and 1.0 T. Images of the ACR phantom were acquired using a head coil following the ACR scanning instructions. Both ACR T1- and T2-weighted sequences as well as T1- and T2-weighted brain sequences in clinical use at each site were acquired. Measurements were performed twice. The images were analyzed and the results were compared with the ACR acceptance levels. RESULTS: The acquisition procedure with the ACR phantom was faster than with the MagNET phantoms. On the first and second measurement rounds 91% and 73% of the systems passed the ACR test. Measured slice thickness accuracies were not within the acceptance limits in site T2 sequences. Differences in the high contrast spatial resolution between the ACR and the site sequences were observed. In 3.0 T systems the image intensity uniformity was slightly lower than the ACR acceptance limit. CONCLUSION: The ACR method was feasible in quality assurance of a multi-unit imaging center and the ACR protocol could replace the MagNET phantom tests. An automatic analysis of the images will further improve cost-effectiveness and objectiveness of the ACR protocol.


Subject(s)
Brain/diagnostic imaging , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Quality Control , Feasibility Studies , Humans , Phantoms, Imaging , Radiography
SELECTION OF CITATIONS
SEARCH DETAIL
...