Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Anim Cogn ; 25(5): 1109-1131, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36018473

ABSTRACT

Dolphins gain information through echolocation, a publicly accessible sensory system in which dolphins produce clicks and process returning echoes, thereby both investigating and contributing to auditory scenes. How their knowledge of these scenes contributes to their echoic information-seeking is unclear. Here, we investigate their top-down cognitive processes in an echoic matching-to-sample task in which targets and auditory scenes vary in their decipherability and shift from being completely unfamiliar to familiar. A blind-folded adult male dolphin investigated a target sample positioned in front of a hydrophone to allow recording of clicks, a measure of information-seeking and effort; the dolphin received fish for choosing an object identical to the sample from 3 alternatives. We presented 20 three-object sets, unfamiliar in the first five 18-trial sessions with each set. Performance accuracy and click counts varied widely across sets. Click counts of the four lowest-performance-accuracy/low-discriminability sets (X = 41%) and the four highest-performance-accuracy/high-discriminability sets (X = 91%) were similar at the first sessions' starts and then decreased for both kinds of scenes, although the decrease was substantially greater for low-discriminability sets. In four challenging-but-doable sets, number of clicks remained relatively steady across the 5 sessions. Reduced echoic effort with low-discriminability sets was not due to overall motivation: the differential relationship between click number and object-set discriminability was maintained when difficult and easy trials were interleaved and when objects from originally difficult scenes were grouped with more discriminable objects. These data suggest that dolphins calibrate their echoic information-seeking effort based on their knowledge and expectations of auditory scenes.


Subject(s)
Bottle-Nosed Dolphin , Dolphins , Echolocation , Male , Animals , Information Seeking Behavior
2.
Anim Cogn ; 25(5): 1207-1217, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36044157

ABSTRACT

As long-term studies reveal, bottlenose dolphin communities comprise a complex network of individual relationships. Individuals form strong bonds (e.g., mother-calf or male partnerships), transient relationships, and also compete against each other for resources. Evidence of bonded partnerships is typically revealed by the years-long study of associations with repeated sightings. However, quickly determining which individuals have close affiliations would benefit both field researchers working to describe individual behavior as they engage in cognitive activities such as cooperative foraging as well as caregivers in zoos who must decide which individuals should be housed together. Observations in aquariums are well-suited for collecting long-term, detailed information on how pairs interact because subjects can always be found and their behavior both above and below the water can be seen well. These are conditions that are rare for most (but not all) ocean-based studies. We used multiple measures to detect affiliated behavior across several dimensions of pairwise affiliation. Specifically, we used association indices to measure the frequency of affiliative behavior, the symmetry of the partnership, the tenor of interactions, and the stability of which partners were strongly affiliated from year to year. Synchronous behavior and reciprocity in proximity-seeking are two examples of potential markers of an affiliative relationship where individual choices-to join, to move together, and to leave-are visible to observers. We found that the combined measures were effective at identifying one pair that maintained a strong, stable relationship across years, one individual that formed a moderately strong trio relationship with both members of the most-affiliated pair, and one individual who was more variable in his relationships. These social markers provide a means of rapidly identifying bonded males in both aquarium and ocean settings, particularly when long-term knowledge of individual histories is not available.


Subject(s)
Bottle-Nosed Dolphin , Male , Animals , Bottle-Nosed Dolphin/psychology , Social Behavior
3.
J Exp Biol ; 220(Pt 6): 1135-1145, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28298467

ABSTRACT

Exponential increases in hydrodynamic drag and physical exertion occur when swimmers move quickly through water, and underlie the preference for relatively slow routine speeds by marine mammals regardless of body size. Because of this and the need to balance limited oxygen stores when submerged, flight (escape) responses may be especially challenging for this group. To examine this, we used open-flow respirometry to measure the energetic cost of producing a swimming stroke during different levels of exercise in bottlenose dolphins (Tursiops truncatus). These data were then used to model the energetic cost of high-speed escape responses by other odontocetes ranging in mass from 42 to 2738 kg. The total cost per stroke during routine swimming by dolphins, 3.31±0.20 J kg-1 stroke-1, was doubled during maximal aerobic performance. A comparative analysis of locomotor costs (LC; in J kg-1 stroke-1), representing the cost of moving the flukes, revealed that LC during routine swimming increased with body mass (M) for odontocetes according to LC=1.46±0.0005M; a separate relationship described LC during high-speed stroking. Using these relationships, we found that continuous stroking coupled with reduced glide time in response to oceanic noise resulted in a 30.5% increase in metabolic rate in the beaked whale, a deep-diving odontocete considered especially sensitive to disturbance. By integrating energetics with swimming behavior and dive characteristics, this study demonstrates the physiological consequences of oceanic noise on diving mammals, and provides a powerful tool for predicting the biological significance of escape responses by cetaceans facing anthropogenic disturbances.


Subject(s)
Bottle-Nosed Dolphin/physiology , Diving , Energy Metabolism , Swimming , Whale, Killer/physiology , Animals , Female , Male , Oxygen/metabolism , Oxygen Consumption , Physical Conditioning, Animal
4.
J Neural Transm (Vienna) ; 123(3): 137-57, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26611796

ABSTRACT

TNFα is a very potent and pleiotropic pro-inflammatory cytokine, essential to the immune system for eradicating cancer and microorganisms, and to the nervous system, for brain development and ongoing function. Yet, excess and/or chronic TNFα secretion causes massive tissue damage in autoimmune, inflammatory and neurological diseases and injuries. Therefore, many patients with autoimmune/inflammatory diseases receive anti-TNFα medications. TNFα is secreted primarily by CD4(+) T cells, macrophages, monocytes, neutrophils and NK cells, mainly after immune stimulation. Yet, the cause for the pathologically high and chronic TNFα secretion is unknown. Can blocking of a particular ion channel in T cells induce by itself TNFα secretion? Such phenomenon was never revealed or even hypothesized. In this interdisciplinary study we discovered that: (1) normal human T cells express Kv1.1 voltage-gated potassium channel mRNA, and the Kv1.1 membrane-anchored protein channel; (2) Kv1.1 is expressed in most CD4(+)CD3(+) helper T cells (mean CD4(+)CD3(+)Kv1.1(+) T cells of 7 healthy subjects: 53.09 ± 22.17 %), but not in CD8(+)CD3(+) cytotoxic T cells (mean CD8(+)CD3(+)Kv1.1(+) T cells: 4.12 ± 3.04 %); (3) electrophysiological whole-cell recordings in normal human T cells revealed Kv currents; (4) Dendrotoxin-K (DTX-K), a highly selective Kv1.1 blocker derived from snake toxin, increases the rate of rise and decay of Kv currents in both resting and activated T cells, without affecting the peak current; (5) DTX-K by itself induces robust TNFα production and secretion by normal human T cells, without elevating IFNγ, IL-4 and IL-10; (6) intact Ca(2+) channels are required for DTX-induced TNFα secretion; (7) selective anti-Kv1.1 antibodies also induce by themselves TNFα secretion; (8) DTX-K activates NFκB in normal human T cells via the unique non-canonical-pathway; (9) injection of Kv1.1-blocked human T cells to SCID mice, causes recruitment of resident mouse cells into the liver, alike reported after TNFα injection into the brain. Based on our discoveries we speculate that abnormally blocked Kv1.1 in T cells (and other immune cells?), due to either anti-Kv1.1 autoimmune antibodies, or Kv1.1-blocking toxins alike DTX-K, or Kv1.1-blocking genetic mutations, may be responsible for the chronic/excessive TNFα in autoimmune/inflammatory diseases. Independently, we also hypothesize that selective block of Kv1.1 in CD4(+) T cells of patients with cancer or chronic infectious diseases could be therapeutic, since it may: a. augment beneficial secretion and delivery of TNFα to the disease-affected sites; b. induce recruitment and extravasation of curative immune cells and factors; c. improve accessibility of drugs to the brain and few peripheral organs thanks to TNFα-induced increased permeability of organ's barriers.


Subject(s)
Autoimmune Diseases , CD4-Positive T-Lymphocytes/metabolism , Inflammation , Kv1.1 Potassium Channel/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Blotting, Western , CD4-Positive T-Lymphocytes/immunology , Electrophoretic Mobility Shift Assay , Female , Humans , Immunohistochemistry , Inflammation/immunology , Inflammation/metabolism , Male , Mice , Mice, SCID , NF-kappa B/immunology , NF-kappa B/metabolism , Patch-Clamp Techniques , Polymerase Chain Reaction , Signal Transduction/immunology
5.
Water Res ; 70: 224-34, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25540836

ABSTRACT

The focus of this full-scale study was to determine the effect of ozone on biopolymer concentrations in biofiltration and ultrafiltration (UF) processes treating surface water from Lake Ontario. Ozonation was out of service for maintenance for 9 months, hence, it was possible to investigate ozone's action on biologically active carbon contactors (BACCs) and UF, in terms of biopolymer removal. Given the importance of biopolymers for fouling, this fraction was quantified using a chromatographic technique. Ozone pre-treatment was observed to positively impact the active biomass in biofilters. However, since an increase of the active biomass did not result in higher biopolymer removal, active biomass concentration cannot be a surrogate for biofiltration performance. It was evident that increasing empty bed contact time (EBCT) from 4 to 19 min only had a positive effect on biopolymer removal through BACCs when ozone was out of service. However, as a mass balance experiment showed, ozone-free operation resulted in higher deposition of biopolymers on a UF membrane and slight deterioration in its performance.


Subject(s)
Biopolymers/chemistry , Filtration/methods , Ozone/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Ontario , Ultrafiltration
6.
BMJ Case Rep ; 20142014 Mar 20.
Article in English | MEDLINE | ID: mdl-24654245

ABSTRACT

Non-hereditary angioedema is a common disease with a prevalence between 5% and 19% and approximately half of the patients experience a swelling of the tongue. We report a case of a 49-year-old Caucasian man with a gross life-threatening angioedema of the tongue, whose attacks occurred every 4 weeks. The most frequent causes of angioedema were excluded. We detected DNA and RNA from Bartonella henselae in the blood and saliva of the patient and in the saliva of the patient's hunting dog. Treatment with azithromycin plus minocycline cleared the blood and saliva of RNA and DNA of Bartonella species, and the patient has been free from angioedema for 1 year. None of the therapy modalities used to treat the hereditary form or ACE or allergy-induced angioedema affect the detrimental course caused by Bartonella species. We therefore suggest that a molecular Bartonella test be included in the analysis of angioedema.


Subject(s)
Angioedema/diagnosis , Bartonella Infections/diagnosis , Bartonella henselae/genetics , DNA, Bacterial/analysis , RNA, Bacterial/analysis , Tongue , Angioedema/etiology , Animals , Anti-Bacterial Agents/therapeutic use , Azithromycin/therapeutic use , Bartonella/genetics , Bartonella Infections/complications , Bartonella Infections/drug therapy , DNA, Bacterial/blood , Dogs , Humans , Male , Middle Aged , Minocycline/therapeutic use , RNA, Bacterial/blood , Saliva/chemistry
7.
Environ Sci Technol ; 45(20): 8788-93, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21916454

ABSTRACT

The aim of this paper is to better understand oxygen transfer reduction caused by floc suspensions. We demonstrate that the overall floc volume significantly influences oxygen transfer depletion. Submerged fine bubble and coarse bubble diffusers are affected in the same way by this phenomenon. The mixed liquor suspended solids concentration (MLSS concentration) is not an appropriate parameter for describing or relating phenomena that are caused by the overall floc volume in activated sludge (e.g., oxygen transfer depression and sludge sedimentation characteristics). A better correlation is achieved by using the mixed liquor volatile suspended solids concentration (MLVSS concentration). To characterize the effects of the overall floc volume in suspensions whose MLVSS concentration cannot be determined (e.g., inorganic iron hydroxide flocs), a new method-the hydrostatic floc volume (HFV)-that approximates the overall floc volume in floc suspensions is introduced. Application of this method demonstrates that oxygen transfer depression caused by iron hydroxide flocs and activated sludge flocs is similar.


Subject(s)
Flocculation , Waste Disposal, Fluid/methods , Geologic Sediments , Sewage/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...