Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(24)2022 Dec 18.
Article in English | MEDLINE | ID: mdl-36556864

ABSTRACT

A pulse burst optical system has been developed, able to alter an energetic, ultrafast 10 ps, 5 kHz output pulse train to 323 MHz intra-burst frequency at the fundamental 5 kHz repetition rate. An optical delay line consisting of a beam-splitting polariser cube, mirrors, and waveplates transforms a high-energy pulse into a pulse burst, circulating around the delay line. Interestingly, the reflected first pulse and subsequent pulses from the delay line have orthogonal linear polarisations. This fact allows independent modulation of these pulses using two-phase-only Spatial Light Modulators (SLM) when their directors are also aligned orthogonally. With hybrid Computer Generated Holograms (CGH) addressed to the SLMs, we demonstrate simultaneous multi-spot periodic surface micro-structuring on stainless steel with orthogonal linear polarisations and cylindrical vector (CV) beams with Radial and Azimuthal polarisations. Burst processing produces a major change in resulting surface texture due to plasma absorption on the nanosecond time scale; hence the ablation rates on stainless steel with pulse bursts are always lower than 5 kHz processing. By synchronising the scan motion and CGH application, we show simultaneous independent multi-beam real-time processing with pulse bursts having orthogonal linear polarisations. This novel technique extends the flexibility of parallel beam surface micro-structuring with adaptive optics.

2.
Materials (Basel) ; 15(8)2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35454442

ABSTRACT

The ongoing trend in the development of powerful ultrashort pulse lasers has attracted increasing attention for this technology to be applied in large-scale surface engineering and modern microfabrication. However, the emission of undesired X-ray photon radiation was recently reported even for industrially relevant laser irradiation regimes, causing serious health risks for laser operators. In the meantime, more than twenty influencing factors have been identified with substantial effects on X-ray photon emission released by ultrashort pulse laser processes. The presented study on enhanced X-ray emission arising from high pulse repetition frequency ultrashort pulse laser processing provides new insights into the interrelation of the highest-contributing parameters. It is verified by the example of AISI 304 substrates that X-ray photon emission can considerably exceed the legal dose rate limit when ultrashort laser pulses with peak intensities below 1 × 1013 W/cm² irradiate at a 0.5 MHz pulse repetition frequency. The peak intensity threshold value for X-ray emissions decreases with larger laser spot sizes and longer pulse durations. Another key finding of this study is that the suction flow conditions in the laser processing area can affect the released X-ray emission dose rate. The presented results support the development of effective X-ray protection strategies for safe and risk-free ultrashort pulse laser operation in industrial and academic research applications.

3.
Materials (Basel) ; 14(9)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925431

ABSTRACT

We report on novel observations of directed re-deposition of ablation debris during the ultrafast laser micro-structuring of stainless steel in the air with multi-beams in close proximity on the surface. This interesting phenomenon is observed with both 10 ps and 600 fs NIR laser pulses at 5 kHz repetition rate. Ablation spot geometries could be altered with the use of beam splitting optics or a phase-only Spatial Light modulator. At low fluence (F ~ 1.0 J cm-2) and pulse exposure of a few hundred pulses, the debris appears as concentrated narrow "filaments" connecting the ablation spots, while at higher fluence, (F ~ 5.0 J cm-2) energetic jets of material emanated symmetrically along the axes of symmetry, depositing debris well beyond the typical re-deposition radius with a single spot. Patterns of backward re-deposition of debris to the surface are likely connected with the colliding shock waves and plasma plumes with the ambient air causing stagnation when the spots are in close proximity. The 2D surface debris patterns are indicative of the complex 3D interactions involved over wide timescales during ablation from picoseconds to microseconds.

SELECTION OF CITATIONS
SEARCH DETAIL
...