Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
1.
Neurobiol Aging ; 136: 125-132, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38359585

ABSTRACT

Dopamine decline is suggested to underlie aging-related cognitive decline, but longitudinal examinations of this link are currently missing. We analyzed 5-year longitudinal data for a sample of healthy, older adults (baseline: n = 181, age: 64-68 years; 5-year follow-up: n = 129) who underwent positron emission tomography with 11C-raclopride to assess dopamine D2-like receptor (DRD2) availability, magnetic resonance imaging to evaluate structural brain measures, and cognitive tests. Health, lifestyle, and genetic data were also collected. A data-driven approach (k-means cluster analysis) identified groups that differed maximally in DRD2 decline rates in age-sensitive brain regions. One group (n = 47) had DRD2 decline exclusively in the caudate and no cognitive decline. A second group (n = 72) had more wide-ranged DRD2 decline in putamen and nucleus accumbens and also in extrastriatal regions. The latter group showed significant 5-year working memory decline that correlated with putamen DRD2 decline, along with higher dementia and cardiovascular risk and a faster biological pace of aging. Taken together, for individuals with more extensive DRD2 decline, dopamine decline is associated with memory decline in aging.


Subject(s)
Aging , Dopamine , Humans , Aged , Brain/diagnostic imaging , Positron-Emission Tomography/methods , Raclopride , Memory Disorders/diagnostic imaging , Memory Disorders/etiology
2.
Neuroradiology ; 66(4): 567-575, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38270624

ABSTRACT

PURPOSE: Although participants in 7 T magnetic resonance (MR) studies tolerate ultra-high field (UHF) well, subjectively experienced short-term effects, such as dizziness, inconsistent movement, nausea, or metallic taste, are reported. Evidence on subjectively experienced short-term effects in multiple exposures to UHF MR is scarce. The purpose of this study is to investigated experience of short-term effects, and occurrence of motion in healthy subjects exposed to seven weekly 7 T MR examinations. METHODS: A questionnaire on short-term effects was completed by participants in an fMRI motor skill study. Seven UHF MR examinations were conducted over 7 weeks (exposure number: 1 to 7). Changes of experienced short-term effects were analyzed. Motion in fMRI images was quantified. RESULTS: The questionnaire was completed 360 times by 67 participants after one to seven 7T MR examinations. Logistic mixed model analysis showed a significant association between dizziness, inconsistent movement, nausea, and headache and the examination numbers (p<0.03). Exposure to repeated examinations had no significant effect on peripheral nerve stimulation (PNS) or motion of the subjects. The overall experience of a 7T examination improved significantly (p<0.001) with increasing examination numbers. CONCLUSION: During multiple 7T examinations, subjects adapt to the strong static field. The short-term effects dizziness, inconsistent movement, nausea, and headache decrease over time as the MR sessions continue and experienced comfort increases. There was no significant difference in motion during the multiple fMRI examinations.


Subject(s)
Dizziness , Movement , Humans , Magnetic Resonance Imaging/methods , Headache , Nausea
4.
J Gerontol B Psychol Sci Soc Sci ; 78(12): 2131-2140, 2023 12 06.
Article in English | MEDLINE | ID: mdl-37756487

ABSTRACT

OBJECTIVES: Very early-life conditions are recognized as critical for healthy brain development. This study assesses early-life risk factors for developing dementia. In the absence of historical medical birth records, we leverage an alternative full population approach using demographic characteristics obtained from administrative data to derive proxy indicators for birth complications and unfavorable birth outcomes. We use proxy variables to investigate the impact of early-life risk factors on dementia risk. METHODS: We use administrative individual-level data for full cohorts born 1932-1950 in Sweden with multigenerational linkages. Records on hospitalization and mortality are used to identify dementia cases. We derive 3 birth risk factors based on demographic characteristics: advanced maternal age, narrow sibling spacing, and twin births, and apply survival analysis to evaluate long-term effects on dementia risk. We control for confounding using multiple indicators for socio-economic status (SES), including parental surnames, and by implementing a sibling design. As comparison exposure, we add low education from the 1970 Census. RESULTS: The presence of at least 1 birth risk factor increases dementia risk (HR = 1.059; 95% CI: 1.034, 1.085). The occurrence of twin births poses a particularly heightened risk (HR = 1.166; 95% CI: 1.084, 1.255). DISCUSSION: Improvements to the very early-life environment hold significant potential to mitigate dementia risk. A comparison to the influence of low education on dementia (the largest known modifiable risk factor) suggests that demographic birth characteristics are of relevant effect sizes. Our findings underscore the relevance of providing assistance for births experiencing complications and adverse health outcomes to reduce dementia cases.


Subject(s)
Dementia , Social Class , Humans , Risk Factors , Survival Analysis , Dementia/epidemiology , Dementia/etiology , Registries
5.
Trends Cogn Sci ; 27(10): 901-915, 2023 10.
Article in English | MEDLINE | ID: mdl-37563042

ABSTRACT

Modifiable risk and protective factors for boosting brain and cognitive development and preventing neurodegeneration and cognitive decline are embraced in neuroimaging studies. We call for sobriety regarding the timing and quantity of such influences on brain and cognition. Individual differences in the level of brain and cognition, many of which present already at birth and early in development, appear stable, larger, and more pervasive than differences in change across the lifespan. Incorporating early-life factors, including genetics, and investigating both level and change will reduce the risk of ascribing undue importance and causality to proximate factors in adulthood and older age. This has implications for both mechanistic understanding and prevention.


Subject(s)
Cognitive Dysfunction , Longevity , Infant, Newborn , Humans , Aging , Cognition , Brain
6.
Aging Brain ; 4: 100082, 2023.
Article in English | MEDLINE | ID: mdl-37457634

ABSTRACT

Contemporary accounts of factors that may modify the risk for age-related neurocognitive disorders highlight education and its contribution to a cognitive reserve. By this view, individuals with higher educational attainment should show weaker associations between changes in brain and cognition than individuals with lower educational attainment. We tested this prediction in longitudinal data on hippocampus volume and episodic memory from 708 middle-aged and older individuals using local structural equation modeling. This technique does not require categorization of years of education and does not constrain the shape of relationships, thereby maximizing the chances of revealing an effect of education on the hippocampus-memory association. The results showed that the data were plausible under the assumption that there was no influence of education on the association between change in episodic memory and change in hippocampus volume. Restricting the sample to individuals with elevated genetic risk for dementia (APOE ε4 carriers) did not change these results. We conclude that the influence of education on changes in episodic memory and hippocampus volume is inconsistent with predictions by the cognitive reserve theory.

7.
Sci Rep ; 13(1): 9418, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37296176

ABSTRACT

The interplay between biomarkers of relevance to neuroplasticity and its association with learning and cognitive ability in old age remains poorly understood. The present study investigated acute changes in plasma concentrations of mature brain-derived neurotrophic factor (mBDNF), its precursor protein (pro-BDNF), and cortisol, in response to acute physical exercise and cognitive training interventions, their covariation and role in predicting cognitive performance. Confirmatory results provided no support for mBDNF, pro-BDNF and cortisol co-varying over time, as the acute interventions unfolded, but did confirm a positive association between mBDNF and pro-BDNF at rest. The confirmatory results did not support the hypothesis that mBDNF change following physical exercise were counteracted by temporally coupled changes in cortisol or pro-BDNF, or by cortisol at rest, in its previously demonstrated faciliatory effect on cognitive training outcome. Exploratory results instead provided indications of a general and trait-like cognitive benefit of exhibiting greater mBDNF responsiveness to acute interventions when coupled with lesser cortisol responsiveness, greater pro-BDNF responsiveness, and lower cortisol at rest. As such, the results call for future work to test whether certain biomarker profiles are associated with preserved cognition in old age.


Subject(s)
Brain-Derived Neurotrophic Factor , Hydrocortisone , Brain-Derived Neurotrophic Factor/metabolism , Learning , Cognition
8.
J Exp Psychol Gen ; 152(3): 763-779, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36136813

ABSTRACT

It has been proposed that evidence accumulation determines not only the speed and accuracy of simple perceptual decisions but also influences performance on tasks assessing higher-order cognitive abilities, such as working memory (WM). Accordingly, estimates of evidence accumulation based on diffusion decision modeling of perceptual decision-making tasks have been found to correlate with WM performance. Here we use diffusion decision modeling in combination with latent factor modeling to test the stronger prediction that practice-induced changes in evidence accumulation correlate with changes in WM performance. Analyses are based on data from the COGITO Study, in which 101 young adults practiced a battery of cognitive tasks, including three simple two-choice reaction time tasks and three WM tasks, in 100 day-to-day training sessions distributed over 6 months. In initial analyses, drift rates were found to correlate across the three choice tasks, such that latent factors of evidence accumulation could be established. These latent factors of evidence accumulation were positively correlated with latent factors of practiced and unpracticed WM tasks, both before and after practice. As predicted, individual differences in changes of evidence accumulation correlated positively with changes in WM performance. Our findings support the proposition that decision making and WM both rely on the active maintenance of task-relevant internal representations. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Subject(s)
Cognition , Memory, Short-Term , Young Adult , Humans , Reaction Time
9.
Sci Rep ; 12(1): 20957, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36470934

ABSTRACT

Cognitive functions are well-preserved for some older individuals, but the underlying brain mechanisms remain disputed. Here, 5-year longitudinal 3-back in-scanner and offline data classified individuals in a healthy older sample (baseline age = 64-68 years) into having stable or declining working-memory (WM). Consistent with a vital role of the prefrontal cortex (PFC), WM stability or decline was related to maintained or reduced longitudinal PFC functional responses. Subsequent analyses of imaging markers of general brain maintenance revealed higher levels in the stable WM group on measures of neurotransmission and vascular health. Also, categorical and continuous analyses showed that rate of WM decline was related to global (ventricles) and local (hippocampus) measures of neuronal integrity. Thus, our findings support a role of the PFC as well as general brain maintenance in explaining heterogeneity in longitudinal WM trajectories in aging.


Subject(s)
Brain , Memory, Short-Term , Humans , Middle Aged , Aged , Memory, Short-Term/physiology , Brain/diagnostic imaging , Brain/physiology , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiology , Brain Mapping , Aging/physiology , Magnetic Resonance Imaging
10.
Elife ; 112022 11 09.
Article in English | MEDLINE | ID: mdl-36350292

ABSTRACT

From observations in rodents, it has been suggested that the cellular basis of learning-dependent changes, detected using structural MRI, may be increased dendritic spine density, alterations in astrocyte volume, and adaptations within intracortical myelin. Myelin plasticity is crucial for neurological function, and active myelination is required for learning and memory. However, the dynamics of myelin plasticity and how it relates to morphometric-based measurements of structural plasticity remains unknown. We used a motor skill learning paradigm in male mice to evaluate experience-dependent brain plasticity by voxel-based morphometry (VBM) in longitudinal MRI, combined with a cross-sectional immunohistochemical investigation. Whole-brain VBM revealed nonlinear decreases in gray matter volume (GMV) juxtaposed to nonlinear increases in white matter volume (WMV) within GM that were best modeled by an asymptotic time course. Using an atlas-based cortical mask, we found nonlinear changes with learning in primary and secondary motor areas and in somatosensory cortex. Analysis of cross-sectional myelin immunoreactivity in forelimb somatosensory cortex confirmed an increase in myelin immunoreactivity followed by a return towards baseline levels. Further investigations using quantitative confocal microscopy confirmed these changes specifically to the length density of myelinated axons. The absence of significant histological changes in cortical thickness suggests that nonlinear morphometric changes are likely due to changes in intracortical myelin for which morphometric WMV in somatosensory cortex significantly correlated with myelin immunoreactivity. Together, these observations indicate a nonlinear increase of intracortical myelin during learning and support the hypothesis that myelin is a component of structural changes observed by VBM during learning.


Subject(s)
Gray Matter , Motor Cortex , Male , Animals , Mice , Gray Matter/pathology , Cross-Sectional Studies , Rodentia , Magnetic Resonance Imaging , Motor Cortex/diagnostic imaging , Motor Cortex/pathology
11.
Neurology ; 99(12): e1278-e1289, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-35790424

ABSTRACT

BACKGROUND AND OBJECTIVES: Cross-sectional studies suggest marked dopamine (DA) decline in aging, but longitudinal evidence is lacking. The aim of this study was to estimate within-person decline rates for DA D2-like receptors (DRD2) in aging and examine factors that may contribute to individual differences in DRD2 decline rates. METHODS: We investigated 5-year within-person changes in DRD2 availability in a sample of older adults. At both occasions, PET with 11C-raclopride and MRI were used to measure DRD2 availability in conjunction with structural and vascular brain integrity. RESULTS: Longitudinal analyses of the sample (baseline: n = 181, ages: 64-68 years, 100 men and 81 women; 5-year follow-up: n = 129, 69 men and 60 women) revealed aging-related striatal and extrastriatal DRD2 decline, along with marked individual differences in rates of change. Notably, the magnitude of striatal DRD2 decline was ∼50% of past cross-sectional estimates, suggesting that the DRD2 decline rate has been overestimated in past cross-sectional studies. Significant DRD2 reductions were also observed in select extrastriatal regions, including hippocampus, orbitofrontal cortex (OFC), and anterior cingulate cortex (ACC). Distinct profiles of correlated DRD2 changes were found across several associative regions (ACC, dorsal striatum, and hippocampus) and in the reward circuit (nucleus accumbens and OFC). DRD2 losses in associative regions were associated with white matter lesion progression, whereas DRD2 losses in limbic regions were related to reduced cortical perfusion. DISCUSSION: These findings provide the first longitudinal evidence for individual and region-specific differences of DRD2 decline in older age and support the hypothesis that cerebrovascular factors are linked to age-related dopaminergic decline.


Subject(s)
Dopamine , Receptors, Dopamine D2 , Aged , Aging , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Positron-Emission Tomography , Raclopride , Receptors, Dopamine D3
12.
NPJ Sci Learn ; 7(1): 7, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35508486

ABSTRACT

Cognitive performance is both heritable and sensitive to environmental inputs and sustained practice over time. However, it is currently unclear how genetic effects on cognitive performance change over the course of learning. We examine how polygenic scores (PGS) created from genome-wide association studies of educational attainment and cognitive performance are related to improvements in performance across nine cognitive tests (measuring perceptual speed, working memory, and episodic memory) administered to 131 adults (N = 51, ages = 20-31, and N = 80, ages = 65-80 years) repeatedly across 100 days. We observe that PGS associations with performance on a given task can change over the course of learning, with the specific pattern of change in associations differing across tasks. PGS correlations with pre-test to post-test scores may mask variability in how soon learning occurs over the course of practice. The associations between PGS and learning do not appear to simply reconstitute patterns of association between baseline performance and subsequent learning. Associations involving PGSs, however, were small with large confidence intervals. Intensive longitudinal research such as that described here may be of substantial value for clarifying the genetics of learning when implemented as far larger scale.

13.
Cereb Cortex ; 32(19): 4356-4369, 2022 09 19.
Article in English | MEDLINE | ID: mdl-35136959

ABSTRACT

Skill learning induces changes in estimates of gray matter volume (GMV) in the human brain, commonly detectable with magnetic resonance imaging (MRI). Rapid changes in GMV estimates while executing tasks may however confound between- and within-subject differences. Fluctuations in arterial blood flow are proposed to underlie this apparent task-related tissue plasticity. To test this hypothesis, we acquired multiple repetitions of structural T1-weighted and functional blood-oxygen level-dependent (BOLD) MRI measurements from 51 subjects performing a finger-tapping task (FTT; á 2 min) repeatedly for 30-60 min. Estimated GMV was decreased in motor regions during FTT compared with rest. Motor-related BOLD signal changes did not overlap nor correlate with GMV changes. Nearly simultaneous BOLD signals cannot fully explain task-induced changes in T1-weighted images. These sensitive and behavior-related GMV changes pose serious questions to reproducibility across studies, and morphological investigations during skill learning can also open new avenues on how to study rapid brain plasticity.


Subject(s)
Gray Matter , Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain/pathology , Gray Matter/diagnostic imaging , Gray Matter/physiology , Humans , Oxygen , Reproducibility of Results
14.
NPJ Parkinsons Dis ; 8(1): 12, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35064138

ABSTRACT

Balance dysfunction is a disabling symptom in people with Parkinson's disease (PD). Evidence suggests that exercise can improve balance performance and induce neuroplastic effects. We hypothesised that a 10-week balance intervention (HiBalance) would improve balance, other motor and cognitive symptoms, and alter task-evoked brain activity in people with PD. We performed a double-blind randomised controlled trial (RCT) where 95 participants with PD were randomised to either HiBalance (n = 48) or a control group (n = 47). We found no significant group by time effect on balance performance (b = 0.4 95% CI [-1, 1.9], p = 0.57) or on our secondary outcomes, including the measures of task-evoked brain activity. The findings of this well-powered, double-blind RCT contrast previous studies of the HiBalance programme but are congruent with other double-blind RCTs of physical exercise in PD. The divergent results raise important questions on how to optimise physical exercise interventions for people with PD.Preregistration clinicaltrials.gov: NCT03213873.

15.
Neuroimage ; 245: 118707, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34742942

ABSTRACT

Dopamine (DA) integrity is suggested as a potential cause of individual differences in working memory (WM) performance among older adults. Still, the principal dopaminergic mechanisms giving rise to WM differences remain unspecified. Here, 61 single-nucleotide polymorphisms, located in or adjacent to various dopamine-related genes, were assessed for their links to WM performance in a sample of 1313 adults aged 61-80 years from the Berlin Aging Study II. Least Absolute Shrinkage and Selection Operator (LASSO) regression was conducted to estimate associations between polymorphisms and WM. Rs40184 in the DA transporter gene, SLC6A3, showed allelic group differences in WM, with T-carriers performing better than C homozygotes (p<0.01). This finding was replicated in an independent sample from the Cognition, Brain, and Aging study (COBRA; baseline: n = 181, ages: 64-68 years; 5-year follow up: n = 129). In COBRA, in vivo DA integrity was measured with 11C-raclopride and positron emission tomography. Notably, WM as well as in vivo DA integrity was higher for rs40184 T-carriers at baseline (p<0.05 for WM and caudate and hippocampal D2-receptor availability) and at the 5-year follow-up (p<0.05 for WM and hippocampal D2 availability). Our findings indicate that individual differences in DA transporter function contribute to differences in WM performance in old age, presumably by regulating DA availability.


Subject(s)
Aging/genetics , Hippocampus/diagnostic imaging , Memory, Short-Term/physiology , Positron-Emission Tomography , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism , Aged , Aged, 80 and over , Alleles , Female , Homozygote , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Raclopride
16.
Science ; 374(6569): eabe0874, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34762470

ABSTRACT

Does tool use share syntactic processes with language? Acting with a tool is thought to add a hierarchical level into the motor plan. In the linguistic domain, syntax is the cognitive function handling interdependent elements. Using functional magnetic resonance imaging, we detected common neurofunctional substrates in the basal ganglia subserving both tool use and syntax in language. The two abilities elicited similar patterns of neural activity, indicating the existence of shared functional resources. Manual actions and verbal working memory did not contribute to this common network. Consistent with the existence of shared neural resources, we observed bidirectional behavioral enhancement of tool use and syntactic skills in language so that training one function improves performance in the other. This reveals supramodal syntactic processes for tool use and language.


Subject(s)
Basal Ganglia/physiology , Cognition , Language , Learning , Psychomotor Performance , Brain Mapping , Female , Humans , Linguistics , Magnetic Resonance Imaging , Male , Memory, Short-Term , Neural Pathways , Young Adult
17.
Sci Rep ; 11(1): 21089, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34702857

ABSTRACT

Within-person, moment-to-moment, variability in behavior increases with advancing adult age, potentially reflecting the influence of reduced structural and neurochemical brain integrity, especially that of the dopaminergic system. We examined the role of dopamine D2 receptor (D2DR) availability, grey-, and white-matter integrity, for between-person differences in cognitive variability in a large sample of healthy older adults (n = 181; 64-68 years) from the Cognition, Brain, and Aging (COBRA) study. Intra-individual variability (IIV) in cognition was measured as across-trial variability in participants' response times for tasks assessing perceptual speed and working memory, as well as for a control task of motor speed. Across the whole sample, no associations of D2DR availability, or grey- and white-matter integrity, to IIV were observed. However, within-person variability in cognition was increased in two subgroups of individuals displaying low mean-level cognitive performance, one of which was characterized by low subcortical and cortical D2DR availability. In this latter group, fronto-striatal D2DR availability correlated negatively with within-person variability in cognition. This finding suggests that the influence of D2DR availability on cognitive variability may be more easily disclosed among individuals with low dopamine-system integrity, highlighting the benefits of large-scale studies for delineating heterogeneity in brain-behavior associations in older age.


Subject(s)
Aging , Cognition , Corpus Striatum/metabolism , Dopamine/metabolism , Memory, Short-Term , Receptors, Dopamine D2/metabolism , Aged , Gray Matter/metabolism , Humans , Middle Aged , White Matter/metabolism
18.
Sci Rep ; 11(1): 16724, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34408221

ABSTRACT

VO2max (maximal oxygen consumption), a validated measure of aerobic fitness, has been associated with better cerebral artery compliance and measures of brain morphology, such as higher cortical thickness (CT) in frontal, temporal and cingular cortices, and larger grey matter volume (GMV) of the middle temporal gyrus, hippocampus, orbitofrontal cortex and cingulate cortex. Single sessions of physical exercise can promptly enhance cognitive performance and brain activity during executive tasks. However, the immediate effects of exercise on macro-scale properties of the brain's grey matter remain unclear. We investigated the impact of one session of moderate-intensity physical exercise, compared with rest, on grey matter volume, cortical thickness, working memory performance, and task-related brain activity in older adults. Cross-sectional associations between brain measures and VO2max were also tested. Exercise did not induce statistically significant changes in brain activity, grey matter volume, or cortical thickness. Cardiovascular fitness, measured by VO2max, was associated with lower grey matter blood flow in the left hippocampus and thicker cortex in the left superior temporal gyrus. Cortical thickness was reduced at post-test independent of exercise/rest. Our findings support that (1) fitter individuals may need lower grey matter blood flow to meet metabolic oxygen demand, and (2) have thicker cortex.


Subject(s)
Cerebrovascular Circulation , Cognition , Gray Matter , Magnetic Resonance Imaging , Oxygen/metabolism , Aged , Female , Gray Matter/blood supply , Gray Matter/diagnostic imaging , Gray Matter/metabolism , Humans , Male , Middle Aged
19.
Front Aging Neurosci ; 13: 666851, 2021.
Article in English | MEDLINE | ID: mdl-34149398

ABSTRACT

It has previously been demonstrated that short-term foreign language learning can lead to structural brain changes in younger adults. Experience-dependent brain plasticity is known to be possible also in older age, but the specific effect of foreign language learning on brain structure in language-and memory-relevant regions in the old brain remains unknown. In the present study, 160 older Swedish adults (65-75 years) were randomized to complete either an entry-level Italian course or a relaxation course, both with a total duration of 11 weeks. Structural MRI scans were conducted before and after the intervention in a subset of participants to test for differential change in gray matter in the two groups in the inferior frontal gyrus, the superior temporal gyrus, and the hippocampus, and in white matter microstructure in the superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus (ILF), fronto-occipital fasciculus, and the hippocampal (HC) section of the cingulum. The study found no evidence for differential structural change following language training, independent of achieved vocabulary proficiency. However, hippocampal volume and associative memory ability before the intervention were found to be robust predictors of vocabulary proficiency at the end of the language course. The results suggest that having greater hippocampal volume and better associative memory ability benefits vocabulary learning in old age but that the very initial stage of foreign language learning does not trigger detectable changes in brain morphometry in old age.

20.
PLoS One ; 16(5): e0251849, 2021.
Article in English | MEDLINE | ID: mdl-34019565

ABSTRACT

We investigated the feasibility aspects of two choice reaction time tasks designed to assess implicit sequence learning and dual task ability in individuals with mild to moderate Parkinson's disease in comparison to healthy individuals. Twelve individuals with mild to moderate Parkinson's disease and 12 healthy individuals, all ≥ 60 years of age, were included. A serial reaction time task was used as a measure of implicit sequence learning and a similar task but with the addition of a simple counting task, was used as a measure of dual task ability. We have present thorough descriptive statistics of the data but we have refrained from any inferential statistics due to the small sample size. All participants understood the task instructions and the difficulty level of both tasks was deemed acceptable. There were indications of task fatigue that demand careful choices for how best to analyse the data from such tasks in future trials. Ceiling effects were present in several accuracy outcomes, but not in the reaction time outcomes. Overall, we found both tasks to be feasible to use in samples of individuals with mild to moderate Parkinson's disease and healthy older individuals.


Subject(s)
Parkinson Disease/psychology , Psychomotor Performance/physiology , Reaction Time/physiology , Serial Learning/physiology , Aged , Cross-Sectional Studies , Feasibility Studies , Female , Humans , Male , Middle Aged , Neuropsychological Tests , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...